

Pharmaceutical Industry Drug Quality Assurance: Strategies for Handling Deviations, Changes and Validations

Zhaoxia Li *

Sinopharm Zhijun (Shenzhen) Pharmaceutical Co., Ltd., Shenzhen 518000, Guangdong, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Ensuring the quality of drugs is of utmost importance in the pharmaceutical industry. This article explores strategies for handling deviations, changes, and validations, covering aspects such as preventing deviations, change control, process validation, and cleaning validation. It introduces risk identification and mitigation strategies, emphasizes supplier qualifications and supply chain transparency, points out the significance of integrating data-driven indicators with regulatory intelligence, and calls for integrating quality assurance methods to address new challenges.

Keywords: Drug quality; Deviations, Changes, Validation; Quality assurance strategies

Online publication: December 26, 2025

1. Introduction

In the pharmaceutical industry, where drug quality is of paramount significance, the industry operates under a highly regulated environment. The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines and FDA/EMA requirements, which are constantly evolving, play a crucial role. These regulations aim to ensure the safety and efficacy of drugs. Deviations, changes, and validations in pharmaceutical processes can significantly impact drug quality. To address these aspects, pharmaceutical companies need to develop effective strategies^[1]. This paper explores strategies for handling these critical elements, considering the latest regulatory landscape, with the goal of enhancing drug quality, ensuring regulatory compliance, and safeguarding public health.

2. Deviation management in pharmaceutical quality assurance

2.1. Preventive strategies for deviations

Preventive Strategies for Deviations in pharmaceutical quality assurance involve several key aspects. Risk assessment tools play a crucial role. By leveraging sophisticated risk assessment techniques, pharmaceutical manufacturers can identify potential sources of deviations in the drug manufacturing process at an early stage. For example, Failure Mode and Effects Analysis (FMEA) can be utilized to evaluate the likelihood and impact of various failure modes, enabling proactive measures to be taken to prevent their occurrence. This helps in focusing resources on areas with higher risk potential, thus

reducing the probability of deviations^[2].

Process controls are another essential preventive measure. Stringent process controls ensure that drug manufacturing processes are consistent and adhere to predefined standards. This includes maintaining proper environmental conditions in manufacturing facilities, strictly controlling raw material quality, and implementing automated monitoring systems. Automated systems can detect even the slightest variations in process parameters in real - time, allowing for immediate corrective actions before a deviation escalates.

Training programs are also vital. Well - trained employees are less likely to cause deviations due to human error. Training should cover not only technical aspects of drug manufacturing but also an in - depth understanding of quality assurance principles. Employees need to be aware of the importance of following standard operating procedures precisely and the potential consequences of deviations. Regular refresher courses can keep employees updated with the latest industry best practices and regulatory requirements, further enhancing their ability to prevent deviations.

2.2. Corrective actions and root cause analysis

Corrective actions and root cause analysis are crucial components in deviation management within pharmaceutical quality assurance. When a deviation occurs, immediate corrective actions are required to address the visible symptoms. These actions aim to bring the process or product back into compliance as quickly as possible. For example, if there is a deviation in the tablet weight during production, the corrective action might involve adjusting the tablet - making machine settings to ensure the correct weight is achieved for subsequent batches.

However, to prevent the recurrence of the deviation, a thorough root cause analysis is essential. Root cause analysis delves deeper into the underlying reasons for the deviation. This can be accomplished through various methodologies. Brainstorming sessions involving all relevant stakeholders, including production operators, quality control personnel, and engineers, can be a good starting point. They can share their insights and experiences related to the deviation. Another approach is the “5 Whys” technique, where one repeatedly asks “why” to drill down to the root cause. For instance, if the tablet weight deviation is detected, asking “why” the machine settings were incorrect might lead to the discovery that the calibration was not done properly. Asking “why” the calibration was incorrect could further reveal that the calibration equipment was faulty. This process continues until the fundamental cause is identified. By implementing corrective actions based on a well - analyzed root cause, pharmaceutical companies can enhance their quality assurance systems and prevent similar deviations from happening in the future^[3].

3. Change control systems

3.1. Classification and evaluation of changes

In the pharmaceutical industry, a well - defined framework is crucial for the classification and evaluation of changes. Changes can be categorized into minor and major ones. Minor changes typically have a limited impact on product quality and regulatory compliance. These might involve small adjustments in packaging design that do not affect product integrity, such as a slight modification in label font size or color, as long as all regulatory information remains clearly visible and unchanged^[4].

On the other hand, major changes are those that have a significant impact on product quality, safety, efficacy, or regulatory compliance. For example, a change in the manufacturing process that affects the drug’s active ingredient purity, dissolution rate, or stability would be considered major. Alterations in the drug’s formulation, like changing the type or amount of excipients in a way that could impact drug release or bioavailability, also fall into this category.

Impact assessment on product quality is an essential part of change evaluation. This includes evaluating how the change might affect the drug’s physical, chemical, and biological properties. For regulatory compliance, it means ensuring that the change adheres to all relevant laws, regulations, and guidelines. Any change, whether minor or major, should be thoroughly evaluated to ensure that the final product continues to meet the high - quality standards expected in the

pharmaceutical industry, safeguarding patient safety and product efficacy.

3.2. Effective implementation of change control

Effective Implementation of Change Control in the pharmaceutical industry demands a holistic approach encompassing stakeholder coordination, protocol development, and post - change monitoring.

Stakeholder coordination is crucial. All relevant parties, including R & D teams, production staff, quality control personnel, regulatory affairs officers, and even customers, should be involved. R & D teams can provide insights into the scientific basis of the change, while production staff can offer practical perspectives on implementation feasibility. Quality control ensures that the change adheres to quality standards, and regulatory affairs guarantee compliance with laws and regulations. By fostering open communication channels among these stakeholders, potential issues can be identified and resolved promptly.

Protocol development serves as the blueprint for change implementation. It should clearly define the scope of the change, the steps involved, the timelines, and the responsibilities of each party. For example, it should detail how the change will be tested, validated, and documented. A well - structured protocol helps in maintaining consistency and ensuring that the change is carried out in an organized manner.

Post - change monitoring is the final piece of the puzzle. After the change is implemented, continuous monitoring is essential to assess its impact on drug quality. Key quality indicators, such as product purity, stability, and efficacy, should be closely tracked. Any unexpected deviations detected during this phase should be addressed immediately, and if necessary, corrective actions should be taken. This iterative process of monitoring and adjustment helps in safeguarding drug quality and maintaining compliance ^[5].

4. Validation strategies in pharmaceutical production

4.1. Process validation approaches

4.1.1. Stage 1: Process Design and Qualification

Process Design and Qualification in process validation is a crucial stage. It commences with the development of process understanding through design of experiments (DoE)^[6]. DoE is a powerful tool that enables pharmaceutical manufacturers to systematically evaluate the relationships between process variables and product quality attributes. By carefully planning and conducting experiments, different factors such as temperature, pressure, and reaction time can be varied in a controlled manner to determine their impact on the final product. This helps in identifying the critical process parameters (CPPs) that have a significant influence on product quality. Once the CPPs are recognized, they are precisely defined and controlled within specific ranges. Qualification then follows, which involves demonstrating that the equipment, facilities, and systems are capable of consistently operating within the established parameters. This includes installation qualification (IQ) to ensure that the equipment is properly installed, operational qualification (OQ) to verify its correct functioning under normal operating conditions, and performance qualification (PQ) to prove that the process can consistently produce products meeting the predefined quality standards. Overall, this stage sets the foundation for a reliable and robust pharmaceutical production process.

4.1.2. Stage 2: Continued Process Verification

Continued process verification is crucial for maintaining the validated state of pharmaceutical production processes. Real - time monitoring systems play a vital role here. These systems can continuously track key process parameters such as temperature, pressure, and flow rate in the manufacturing environment. For example, in the production of injectable drugs, real - time temperature monitoring ensures that the active ingredients remain stable throughout the sterilization process. Any deviation from the predefined acceptable range can be immediately detected, allowing for timely corrective actions ^[7].

Statistical tools also contribute significantly to continued process verification. Statistical Process Control (SPC) charts, for instance, can be used to analyze process data over time. By plotting process variables like product purity or dissolution rate on these charts, trends and patterns can be identified. If a process starts to show signs of drift, such as a gradual

decrease in product purity, SPC charts can alert quality control teams. This enables them to investigate the root causes, which could range from equipment wear - and - tear to changes in raw material quality. Through continuous application of real - time monitoring and statistical analysis, pharmaceutical manufacturers can ensure that their production processes remain within the validated state, thus safeguarding drug quality.

4.2. Cleaning validation protocols

4.2.1. Equipment-Specific Cleaning Criteria

Equipment - Specific Cleaning Criteria in Cleaning Validation Protocols are established based on a combination of factors. Primarily, residue limits are determined by leveraging toxicity data. Understanding the potential harm that residual substances from previous production batches can cause is crucial. For instance, if a particular pharmaceutical ingredient is highly toxic, even minute residues left on equipment could pose significant risks to subsequent drug products and ultimately to patients. This requires in - depth research into the toxicological profiles of all substances used in the production process^[8].

In addition to toxicity data, analytical method validation is also an essential aspect. The methods used to detect and quantify residues on equipment must be reliable, accurate, and precise. Only with a well - validated analytical method can manufacturers be certain that the equipment has been cleaned to the required standards. This involves demonstrating that the method can consistently detect residues at the established limits, regardless of the complexity of the equipment's surface or the matrix in which the residues are present. By integrating these two key elements - toxicity - based residue limits and analytical method validation - in setting equipment - specific cleaning criteria, pharmaceutical manufacturers can ensure that their equipment is thoroughly cleaned between production runs, safeguarding the quality and safety of the drugs they produce.

4.2.2. Swab Sampling and Microbial Control

In pharmaceutical production, swab sampling is a crucial technique within cleaning validation protocols for ensuring drug quality. It is used to detect residues on equipment surfaces that might otherwise contaminate subsequent batches of drugs. When conducting swab sampling, the selection of swabs is of great importance. The swabs should be made of materials that do not shed fibers and are able to efficiently absorb and release the target analytes. The sampling locations need to be carefully chosen, typically including areas most likely to retain residues, such as joints, valves, and corners of equipment^[9].

Microbial control is another essential aspect. Microorganisms can not only cause spoilage of drugs but also pose potential health risks to patients. To control microorganisms, strict cleaning and disinfection procedures are implemented. After swab sampling, the samples are analyzed for microbial content. The acceptable limits for microbial contamination are pre - determined based on regulatory requirements and product - specific characteristics. Regular monitoring of microbial levels during the cleaning process helps to identify any potential issues promptly. By integrating effective swab sampling and strict microbial control into cleaning validation protocols, pharmaceutical manufacturers can significantly enhance drug quality assurance and minimize the risk of product - related problems.

5. Integrated quality assurance strategies

5.1. Quality risk management

5.1.1. Risk identification tools

In pharmaceutical operations, two key risk identification tools are the application of Failure Mode and Effects Analysis (FMEA) and Hazard Analysis and Critical Control Points (HACCP) principles. FMEA focuses on potential failures within processes, products, or services. It involves identifying possible failure modes, analyzing their potential effects on product quality, and assessing the severity, occurrence probability, and detectability of these failures. By doing so, pharmaceutical companies can prioritize risks and develop preventive and corrective actions to mitigate them. For example, in drug manufacturing, FMEA can be used to analyze potential equipment failures that could impact product quality, such as a

malfunctioning filling machine that might lead to incorrect dosage amounts.

HACCP, on the other hand, is a systematic approach to identify, evaluate, and control food - and in this case, drug - safety hazards. It emphasizes identifying critical control points in the pharmaceutical production process where hazards can be prevented, eliminated, or reduced to acceptable levels. For instance, in the production of injectable drugs, the sterilization step is a critical control point. HACCP principles guide the establishment of control measures, monitoring procedures, and corrective actions at these points. The application of FMEA and HACCP principles in pharmaceutical operations is essential for comprehensive quality risk identification, enabling companies to proactively manage risks and ensure drug quality^[10].

5.1.2. Mitigation strategy optimization

Mitigation Strategy Optimization in Quality Risk Management within the pharmaceutical industry involves a meticulous cost - benefit analysis of risk control measures and contingency planning. When considering risk control measures, pharmaceutical companies must evaluate the financial investment required against the potential benefits in terms of drug quality and patient safety. For instance, implementing a more advanced manufacturing monitoring system might have a high upfront cost, but it could significantly reduce the risk of product defects, thus saving costs associated with product recalls and potential legal liabilities in the long run^[11].

Contingency planning is also a crucial part of mitigation strategy optimization. It involves preparing for unforeseen events that could impact drug quality, such as natural disasters affecting production facilities or sudden shortages of key raw materials. By having well - thought - out contingency plans, companies can quickly respond to these situations, minimizing disruptions to drug supply and maintaining quality. These plans may include alternative sourcing options for raw materials, backup production sites, or emergency production protocols.

In essence, effective mitigation strategy optimization requires a comprehensive understanding of both the short - term and long - term implications of risk control measures and contingency plans. It is a balancing act that aims to ensure drug quality while also maintaining the company's economic viability in an industry where quality assurance is non - negotiable.

5.2. Supplier quality assurance

5.2.1. Vendor qualification processes

Vendor Qualification Processes in the pharmaceutical industry are of utmost importance for ensuring drug quality. The audit criteria for raw material suppliers form the foundation of this process. These criteria should comprehensively assess a supplier's facilities, including the state - of - the - art equipment for raw material production, storage conditions to maintain material integrity, and hygiene standards to prevent contamination^[12]. A supplier's manufacturing processes are also key. This involves evaluating whether the processes are well-defined, validated, and capable of consistently producing high - quality raw materials.

Performance metrics play a vital role in vendor qualification as well. Metrics such as the percentage of raw materials that meet quality specifications upon receipt can indicate a supplier's reliability. On-time delivery rate is another crucial metric, as delays in raw material supply can disrupt pharmaceutical production schedules. Additionally, the number of quality - related complaints or recalls associated with a supplier's raw materials over a specific period can be a strong indicator of their performance. By thoroughly examining these audit criteria and performance metrics, pharmaceutical companies can identify and select reliable raw material suppliers, thereby safeguarding the quality of their drugs from the very start of the production chain.

5.2.2. Supply chain transparency systems

Supply Chain Transparency Systems play a crucial role in Supplier Quality Assurance within the pharmaceutical industry's drug quality assurance framework. Blockchain applications and track - and - trace technologies are at the forefront of enhancing this transparency for API (Active Pharmaceutical Ingredient) quality assurance^[13].

Blockchain, with its decentralized and immutable ledger, provides a secure and transparent platform for recording every transaction and movement of APIs in the supply chain. Each step, from raw material sourcing to the final API

production and distribution, can be logged on the blockchain. This allows all stakeholders, including pharmaceutical manufacturers, suppliers, and regulatory authorities, to access real - time and accurate information. For example, a manufacturer can easily verify the origin of an API, ensuring it comes from a reliable source as required.

Track - and - trace technologies, on the other hand, use unique identifiers such as barcodes, QR codes, or RFID tags. These tags are attached to API containers or packages. As the API moves through the supply chain, each location it passes through can scan and record its details. This enables end - to - end visibility, helping to quickly identify any potential issues or deviations. If a quality problem is detected in an API, the track - and - trace system can quickly pinpoint where in the supply chain the issue originated, facilitating rapid corrective action. Together, these blockchain - based and track - and - trace systems enhance supply chain transparency, which in turn is essential for maintaining high - quality APIs and overall drug quality assurance.

5.3. Continuous improvement mechanisms

5.3.1. Data-driven quality metrics

Data - Driven Quality Metrics play a crucial role in the pharmaceutical industry's drug quality assurance, especially when handling deviations, changes, and validations. By leveraging data - driven metrics, pharmaceutical companies can gain a more in - depth understanding of their manufacturing processes and product quality.

These metrics can be derived from various sources, such as production records, laboratory test results, and customer feedback. For instance, parameters like yield, purity, dissolution rate, and stability data are key quality metrics. Analyzing the trends in these metrics over time can help identify potential deviations before they escalate into significant quality issues.

When implementing changes in the manufacturing process, data-driven quality metrics provide an objective basis for evaluation. By comparing pre- and post-change metric values, companies can accurately assess the impact of the change on product quality. If a new formulation is introduced, metrics related to bioavailability and consistency can determine whether the change is beneficial or requires further adjustment.

In the context of validations, data - driven quality metrics help demonstrate that processes are operating within an acceptable range. Metrics such as process capability indices can quantify how well a process is performing relative to its specifications. This data-driven approach not only ensures compliance with regulatory requirements but also supports continuous improvement efforts. By using data-driven quality metrics, pharmaceutical companies can make informed decisions, optimize processes, and ultimately enhance drug quality^[14].

5.3.2. Regulatory Intelligence Integration

Regulatory intelligence integration is of vital importance in pharmaceutical industry drug quality assurance. As the ICH guidelines and FDA/EMA requirements are constantly evolving, pharmaceutical companies need to adapt promptly. This involves closely monitoring regulatory updates from various official channels, such as the official websites of the FDA and EMA, and subscribing to reliable regulatory news services. By integrating this regulatory intelligence, companies can stay informed about the latest changes in standards for drug quality, manufacturing processes, and documentation requirements. For instance, when the ICH issues new guidelines on stability testing, companies can quickly adjust their in-house testing protocols. This integration also helps in proactively aligning quality assurance strategies with regulatory expectations. It enables companies to anticipate potential regulatory challenges related to handling deviations, changes, and validations. For example, if the FDA hints at stricter validation requirements for new drug delivery systems, companies can start preparing their validation plans in advance. Overall, regulatory intelligence integration serves as a guiding light, ensuring that pharmaceutical companies' quality assurance strategies remain compliant and effective in the face of a dynamic regulatory landscape.

6. Conclusion

In conclusion, ensuring drug quality in the pharmaceutical industry is a multifaceted endeavor, especially when dealing with deviations, changes, and validations. The synthesis of holistic quality assurance approaches is not just an option

but a necessity. Aligning with regulatory requirements is the cornerstone upon which all quality-related activities are built. Regulatory bodies set the standards that safeguard public health, and any deviation from these can have severe consequences. Technological innovation, on the other hand, serves as a powerful enabler. New technologies such as advanced analytics, artificial intelligence, and continuous manufacturing can revolutionize how deviations are detected, changes are managed, and validations are conducted.

Looking at biologics manufacturing and personalized medicine, the challenges are emerging and complex. Biologics, with their intricate molecular structures, require highly specialized quality control measures. Personalized medicine, tailored to individual patients, adds another layer of complexity as it demands real - time adaptability in quality assurance processes. The industry must rise to these challenges by investing in research, fostering cross-disciplinary collaborations, and developing agile quality systems. By doing so, the pharmaceutical industry can uphold the highest standards of drug quality, ultimately ensuring the safety and efficacy of medications for patients worldwide. This integrated approach to quality assurance will be the key to navigating the ever - evolving landscape of pharmaceutical production.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Zhang Y, Wang L, Liu H, 2021, Quality Risk Management in Pharmaceutical Production: A Systematic Review. *Journal of Pharmaceutical Innovation*, 16(3): 401-415.
- [2] Kumar A, Sharma R, Patel S, 2020, Effective Change Control Systems in GMP Environments. *Pharmaceutical Engineering*, 40(5): 34-45.
- [3] Chen X, Li W, Zheng M, 2022, Advanced Approaches to Cleaning Validation in API Manufacturing. *PDA Journal of Pharmaceutical Science and Technology*, 76(2): 89-104.
- [4] Gupta P, Singh A, Kumar N, et al., 2023, Data-Driven Quality Metrics for Continuous Process Verification. *International Journal of Pharmaceutics*, 635: 122736.
- [5] Silva FJ, Ribeiro AC, 2021, Blockchain Applications in Pharmaceutical Supply Chain Transparency. *Drug Discovery Today*, 26(8): 1793-1801.
- [6] Olsen BA, Martinez MN, 2020, Process Validation Lifecycle Approach: From Development to Commercial Production. *AAPS PharmSciTech*, 21(5): 159.
- [7] Yang J, Feng Q, Zhou Y, 2022, Risk-Based Supplier Qualification in Pharmaceutical Industry. *Quality Engineering*, 34(4): 567-581.
- [8] Smith TJ, Wagner CC, 2023, Regulatory Intelligence Integration for Quality Systems. *Therapeutic Innovation & Regulatory Science*, 57(1): 45-56.
- [9] Desai D, Ross DS, Mohan P, 2021, QbD Implementation in Oral Solid Dosage Form Development. *Journal of Pharmaceutical Sciences*, 110(9): 3120-3132.
- [10] Johnson MH, Thompson KL, 2022, Root Cause Analysis Methodologies in Deviation Management. *Pharmaceutical Technology*, 46(11): 38-45.
- [11] Wang Y, Zhang G, Xu M, 2020, PAT Applications in Continuous Pharmaceutical Manufacturing. *Advanced Drug Delivery Reviews*, 163: 56-70.
- [12] Rodrigues SP, Costa RO, 2023, Cleaning Validation Strategies for Multiproduct Facilities. *BioProcess International*, 21(3): 28-35.
- [13] Verma R, Pandey AK, 2021, ICH Q9 Implementation in Pharmaceutical Quality Systems. *Pharmaceutical Medicine*, 35(4): 211-223.

[14] Li H, Chen Z, Wang X, 2022, Microbial Control Strategies in Cleanroom Environments. *European Journal of Parenteral & Pharmaceutical Sciences*, 27(1): 12-20.

Publisher's note

Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.