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Abstract: Objective: Focusing on the adaptability contradiction between talent cultivation in the intelligent manufacturing 
field and industrial demands, this paper proposes a curriculum teaching reform plan with generative artificial intelligence 
(GAI) technology as the core driving force. By constructing a “dual-loop driving” teaching model (collaboration between the 
cognitive construction loop and the technology empowerment loop) and an AI-enhanced C2D2IO framework, the theoretical 
mechanism of human-machine collaborative teaching is systematically explored. Based on the “three-stage nine-step” teaching 
method, the curriculum system is reconstructed, and a teaching system integrating digital twin and intelligent diagnosis 
functions is developed. Practical paths, including industrial fault case library construction, cloud-based resource sharing, and 
enterprise projects entering the classroom, are formed. Finally, the reform effect is verified through the “four-dimensional radar 
evaluation model” (learning satisfaction, competency achievement, industrial adaptability, innovation contribution). Research 
shows that this plan can shorten the post adaptation period of graduates to 2.8 months, increase the proportion of real enterprise 
projects entering the classroom to 60%, and improve the score of complex engineering problem-solving ability by 18.2 points. 
The research results can provide a theoretical reference and a practical paradigm for the digital transformation of engineering 
education in the background of emerging engineering education.
Keywords: Generative artificial intelligence; Intelligent manufacturing; Curriculum teaching reform; Human-machine 
collaborative teaching
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1. Introduction
1.1. Research background
Against the backdrop of the global manufacturing industry’s transformation toward intelligent manufacturing, traditional 
engineering education models face challenges such as outdated knowledge systems, insufficient industry-education 
integration (a collaborative model aligning talent training with industrial needs), and weak cultivation of innovative 
capabilities [1–3]. Generative Artificial Intelligence (GAI), as a core driver of technological change, has not only reshaped 
industrial R&D processes, production logics, and organizational forms [4] but also put forward new requirements for the 
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teaching paradigms, talent cultivation goals, and evaluation systems of higher education. Hao et al. pointed out that GAI 
is a key force driving the paradigm transformation of research universities and realizing the coordinated development 
of independent scientific and technological innovation and talent cultivation [5]; its in-depth application in education 
has become an inevitable choice to respond to national strategic needs and consolidate core competitiveness. Hao et 
al.’s research further noted that GAI can construct new academic research communities, build breakthrough innovative 
knowledge systems, strengthen systematic interdisciplinary construction, create efficient achievement transformation 
ecological chains, and promote in-depth integration of industry, education, and research; however, this process has 
quietly spawned multiple risks such as “innovation traps”, “scientific research distortion”, “academic colonization”, and 
“academic misconduct”, which adversely affect the overall innovation efficiency of high-level research universities, 
global academic credibility, the dominant position of knowledge innovation subjects, and the cultivation of top innovative 
talents. To address these issues, high-level research universities should continuously regulate algorithmic power, provide 
algorithmic support combining academic autonomy and independent innovation; conduct full-cycle data governance to 
lay a solid foundation for data security in disruptive technological research; build a technological governance community 
to strengthen the technological leadership of organized scientific research; and establish ethical norms for human-machine 
collaboration to cultivate compound digital intelligent top innovative talents.

Meanwhile, the complexity and practicality of the intelligent manufacturing course teaching urgently require 
technological empowerment to break through traditional teaching bottlenecks. Tian et al. found through a systematic 
literature review that feedback mechanisms of educational agents (e.g., facial expressions, human-like voices) can 
significantly enhance learning motivation and social presence [6–8], while Zhong et al.’s research showed that question 
strategies and prompt framework design for reasoning large models directly affect learning outcomes [9]. This provides 
a theoretical basis and practical inspiration for the application of GAI in intelligent manufacturing courses. However, 
current intelligent manufacturing course teaching still faces issues such as “shallow dependence” on technical tools and a 
lack of systematic human-machine collaboration mechanisms[4,10,11], so there is an urgent need to construct a new teaching 
paradigm adapted to intelligent manufacturing needs.

1.2. Research status
World-class universities have taken the lead in exploring the integration of GAI and higher education. Zhou et al. pointed 
out that some universities have issued detection regulations to ensure teaching quality in response to the impact of AI-
generated Content (AIGC) on academic originality [12]; however, Guo’s research showed that the AIGC identification 
system faces technical implementation difficulties and subject responsibility dilemmas in practice [6], reflecting the 
complexity of technological governance. Zhou et al.’s research further noted that effectively distinguishing between human 
and machine differences, regarding AIGC use as ghostwriting, recognizing the separation between operators and AIGC, 
and worrying about technology’s substitution for human capabilities collectively constitute the premise for the emergence 
of AIGC detection regulations. However, under critical examination of theory and practice, the effectiveness of technical 
discrimination is questionable; there are misunderstandings in the ghostwriting assumption, the consensus on human-
machine separation is shaken, and the limitations of the capability substitution assumption challenge these premises. Thus, 
universities need to shift from AIGC detection to substantive paper content review, from focusing on ghostwriting to 
process-based capability assessment, strengthen the consistency of academic evaluation in process and result dimensions, 
and commit to cultivating students’ comprehensive literacy and innovative capabilities to adapt to changing times.

Jiang et al. found through analyzing policies of the top 100 global universities that foreign institutions generally adopt 
a “support and constraint” strategy: at the teaching level, they enhance effectiveness by providing “GenAI toolboxes” 
before class, guiding GenAI-assisted teaching during class, and conducting precise assessment with GenAI after class; 
at the management level, they implement hierarchical authorization and integrity declarations to prevent academic 
misconduct [13]. In addition, Mackenzie’s research pointed out that the rapid development of GAI has brought both 
technological breakthroughs and concerns about ethics and employment [8], which provides a warning for risk prevention in 
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intelligent manufacturing course reform. Mackenzie’s research also mentioned that in 1950, computer pioneer Alan Turing 
proposed an AI test named after him: an AI-equipped machine should be able to chat with humans and convince them it 
was human. While the Turing test is not an adequate definition of AI, it has long been regarded as an important milestone.

Domestic scholars have carried out multi-dimensional explorations on GAI empowering education. Su et al. 
found through recruitment information analysis that talent demand in the GAI field focuses on model R&D, product 
development, and team management, emphasizing capabilities such as algorithm programming, data processing, and cloud 
computing platform experience [14], which provides an industry reference for intelligent manufacturing course capability 
cultivation goals. Su et al.’s research further noted that the main job responsibilities of GAI positions include seven aspects: 
cutting-edge research and knowledge sharing, model and algorithm R&D, customer demand analysis and satisfaction, 
generative product R&D and management, scalable solution development and implementation, team management and 
leadership, and strategic planning. Capability requirements include basic GAI knowledge, algorithm and programming 
skills, software engineering and architecture, data processing, cloud computing platform experience, product development, 
as well as personal qualities such as communication, leadership, problem-solving, and adaptability. Additionally, academic 
achievements, entrepreneurial experience, and mindset are required.

Zhong et al.’s experimental research showed that the combination of the “two-stage three-link” question strategy and 
non-visual reasoning is more conducive to improving students’ innovative capabilities [9], providing empirical evidence 
for course teaching method design. In the field of engineering education, Yan constructed an embodied intelligence-
empowered experimental teaching system for human factors engineering, using humanoid robots to simulate complex 
human-machine interaction scenarios and GAI to build dynamic task contexts [15]; its “theory-practice-capability” closed-
loop mechanism has important reference significance for intelligent manufacturing courses. Yan’s research further noted 
that this system is based on “intelligent technology as the foundation, human factors theory as the soul, and capability 
cultivation as the core”, using large models to realize multi-modal interaction and promote experimental teaching toward 
immersion and intelligence. The system focuses on four core links (perception-interaction-decision-execution), integrates 
multi-modal perception and human-machine interaction technologies, and forms a closed-loop cultivation mechanism. 
Practice shows that this system effectively improves students’ comprehensive capabilities in human factors design and 
intelligent technology application, and enhances their awareness of engineering innovation and ethical responsibility, 
providing a contextualized, intelligent, and systematic new paradigm for human factors engineering experimental teaching.

Chen proposed that collaborative thinking with AI can reshape human thinking processes and construct new thinking 
loops [16], which provides theoretical support for the collaborative mechanism between the cognitive construction loop and 
technology empowerment loop in the “dual-loop driving” teaching model. Chen’s research further noted that collaborative 
thinking with AI can reshape thinking processes, construct new thinking loops and information flow ways; AI can become 
a thinking partner, and humans can learn new knowledge organization methods, develop new thinking, and improve 
capabilities through collaboration with AI—this process itself is a new learning process.

However, existing research still has deficiencies: First, at the theoretical level, there is a lack of an AI intervention 
logical framework for intelligent manufacturing courses. For example, Liu et al. pointed out that educational knowledge 
transformation faces dilemmas such as difficulty in externalizing tacit knowledge and interdisciplinary integration [17], so there 
is an urgent need to clarify AI’s mechanism in links such as “collaborative conception, virtual debugging, and intelligent 
operation and maintenance”. Liu et al.’s research further noted that current educational knowledge transformation faces 
multiple dilemmas: difficulty in externalizing tacit knowledge, scaling innovative achievements, grasping knowledge 
system complexity, and interdisciplinary integration. Large model technology provides an opportunity to solve these 
dilemmas. This study systematically analyzes core challenges of educational knowledge transformation, demonstrates the 
applicability of large models, and constructs a large model-supported knowledge transformation path framework based on 
implementation science. The framework takes evidence integration, adaptive transformation, implementation guarantee, 
innovation diffusion, and ethical considerations as core elements, clarifying the application of large models in each link.

Second, at the practical level, Mo et al. pointed out that mechanical engineering graduate education has problems such 
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as insufficient industry-education integration and weak innovative capability cultivation [1]. Mo et al.’s research further 
noted that the intelligent manufacturing background puts forward new requirements for the knowledge structure and 
ability literacy of mechanical engineering graduates. This paper analyzes deficiencies in China’s mechanical engineering 
graduate education in training objectives, curriculum system, teaching model, practice links, tutor team, and evaluation 
mechanism (e.g., insufficient industry-education integration, weak innovation cultivation, outdated knowledge systems). 
Combining advanced concepts such as competency-based education, industry-education integration, and cutting-
edge interdisciplinary, this paper constructs a reform path with “cutting-edge leadership, interdisciplinary integration, 
practice-driven, and innovation empowerment” as the core, including: defining talent training objectives in the intelligent 
manufacturing context; reconstructing a modular, cutting-edge, and interdisciplinary curriculum system; deepening the 
reform of the “project-through” teaching model; building a multi-level open innovation practice platform; constructing a 
diversified collaborative tutor team; and establishing a comprehensive evaluation mechanism emphasizing both process 
and development.

By comparing vocational education experiences of Germany, the United States, and Japan, Zhang emphasized the 
need to strengthen school-enterprise cooperation and teaching model innovation [18], but a systematic curriculum reform 
path has not yet been formed. Zhang’s research further noted that the global manufacturing industry is facing great changes 
brought by intelligent manufacturing technology; enterprises need new employees with good vocational education and 
provide lifelong learning opportunities for in-service employees. All countries generally believe that a strong vocational 
education and training system is essential to provide high-quality technical talents for manufacturing. Analyzing the 
experiences of Germany, the United States, and Japan—comparing their performance in employment rate, flexibility, and 
adaptability from the perspective of school-running subjects, their similarities and differences in industry leadership and 
school-enterprise cooperation from the perspective of scientific and technological innovation, and their innovations in 
teaching models and content from the perspective of teaching innovation—can provide reference for China’s intelligent 
manufacturing talent cultivation [19–22].

In summary, GAI-empowered intelligent manufacturing course reform has become an important issue in engineering 
education. This study aims to construct a “dual-loop driving” teaching model and an AI-enhanced C2D2IO framework, 
develop a “three-stage nine-step” teaching method and a digital twin teaching system, explore practical paths and verify 
reform effects, and provide theoretical guidance and practical paradigms for promoting innovative development of 
intelligent manufacturing course teaching.

1.3. Research objectives and content
1.3.1. Research objectives
This study aims to systematically explore the theoretical mechanisms and practical paths of generative artificial intelligence 
(GAI) empowering intelligent manufacturing curriculum teaching reform. The specific objectives include:

(1) Constructing a “dual-loop driving” teaching model to reveal the internal interaction mechanism between GAI and 
human-machine collaborative teaching;

(2) Designing an AI-enhanced C2D2IO teaching framework and a “three-stage nine-step” teaching method, and 
developing a digital twin teaching system integrating digital twin and intelligent diagnosis functions;

(3) Exploring replicable practical paths, including implementation strategies for key links such as industrial fault case 
library construction, cloud-based resource sharing, and enterprise projects entering the classroom;

(4) Establishing a “four-dimensional radar evaluation model” to quantify the effect of teaching reform from four 
dimensions: learning satisfaction, competency achievement, industrial adaptability, and innovation contribution.

1.4. Research content
1.4.1. Theoretical mechanism construction level
Integrate constructivist learning theory and Industry 4.0 system theory to analyze the interaction mechanism between the 
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cognitive construction loop and technology empowerment loop; based on the “Eight-Element System Model of Human-
Intelligence Collaborative Teaching”, define the role boundaries and interaction rules of teacher-AI-student tripartite 
subjects, and quantify the AI cognitive agency threshold (task complexity ≥ 0.65) and the core value domains of teachers.

1.4.2. Teaching model design level
Develop an AI-enhanced C2D2IO teaching framework, adding “collaborative conception” and “intelligent operation and 
maintenance” links to the traditional CDIO model; design a “three-stage nine-step” teaching method, dividing the teaching 
process into three stages: virtual simulation foundation, production line-level collaborative training, and engineering 
comprehensive application; support the development of a digital twin teaching system to achieve high-fidelity reproduction 
of over 85% of industrial scenarios.

1.4.3. Practical path exploration level
Construct an industrial typical fault case library covering more than 1200 fault scenarios, and establish a knowledge graph 
of “fault phenomenon - cause analysis - solution”; build a cloud-based intelligent teaching platform, adopting the “provincial 
overall planning + municipal sub-node” architecture; explore the mechanism of real enterprise projects entering the 
classroom to ensure that over 60% of core courses integrate real enterprise projects.

1.4.4. Effect evaluation and verification level
Construct a “four-dimensional radar evaluation model”, using methods such as Likert 5-point scale, CMMM Level 5 
standard, and text similarity analysis to measure teaching effects; select three universities of different types to carry out 
empirical research, and compare the learning effect differences between the experimental.

2. Theoretical basis of the “dual-loop driving” teaching model
2.1. Theoretical origin and core connotation
The “Dual-Loop Driving” teaching model is rooted in the deep integration of Constructivist Learning Theory and Industry 
4.0 System Theory. Piaget’s Cognitive Development Theory emphasizes that learning is an active knowledge construction 
process through the “assimilation-accommodation” mechanism, while Vygotsky’s Sociocultural Theory highlights the 
core role of social interaction in the development of advanced psychological functions. This model expands the traditional 
“teacher-student binary interaction” into a “teacher-AI-student tripartite interaction”, and achieves the trinity coupling 
of “learning process-technology tools-industrial demands” through dynamic collaboration between the Cognitive 
Construction Loop and Technology Empowerment Loop.

The Cognitive Construction Loop follows the path of “Embodied Experience → AI Reflection → Conceptual 
Abstraction → Active Experimentation”: Students gain embodied experience of equipment operation (e.g., tool wear 
experiments in CNC machining centers) through digital twin systems; AI agents generate reflection reports (including 
operation deviation analysis and improvement suggestions) based on real-time data to guide students in abstracting process 
parameter optimization rules; students then verify improvement plans through active experiments. The Technology 
Empowerment Loop forms a closed loop of “Digital Twin → Intelligent Diagnosis → Dynamic Optimization → 
Knowledge Precipitation”: Digital twin technology realizes real-time mapping between physical equipment and virtual 
models; intelligent diagnosis systems automate repetitive guidance tasks; dynamic optimization modules push personalized 
learning resources; knowledge precipitation converts optimization experiences into case libraries and knowledge graphs.

2.2. Diagram of the “dual-loop driving” teaching model
Figure 1 shows two nested circular structures: The inner circle is the Cognitive Construction Loop, labeled “Embodied 
Experience → AI Reflection → Conceptual Abstraction → Active Experimentation” with arrows connecting each link and 
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typical case data (e.g., “error rate reduced by 43% in AI Reflection link”); the outer circle is the Technology Empowerment 
Loop, labeled “Digital Twin → Intelligent Diagnosis → Dynamic Optimization → Knowledge Precipitation” with each 
link corresponding to the inner circle and bidirectional arrows indicating data interaction. The core area is labeled “teacher-
AI-student tripartite interaction” with different colors distinguishing the role boundaries of the three parties. 

Figure 1. “Dual-loop driving” teaching model.This model achieves dynamic balance between knowledge construction and technology 
empowerment through collaboration between the Cognitive Construction Loop and Technology Empowerment Loop. The dual-loop coupling 
nodes include data middle platform sharing, goal coordination matrix, and resource reuse mechanism.

2.3. Coupling mechanism of dual-loop collaboration
The Cognitive Construction Loop and Technology Empowerment Loop achieve deep coupling through three mechanisms: 
“Data Interaction → Goal Coordination → Resource Sharing.”

2.3.1. Data interaction mechanism 
The data middle platform shares student operation data (e.g., error types, completion time) and teaching resource data (e.g., 
virtual scene parameters) in real time to form closed-loop regulation. For example, when students repeatedly make “robot 
path planning conflict” errors, the data middle platform pushes information to the dynamic optimization module to reduce 
virtual scene difficulty and push relevant micro-lesson videos.

2.3.2. Goal coordination mechanism 
Based on the “ability-resource” mapping matrix, the horizontal dimension is core intelligent manufacturing capabilities 
(e.g., digital twin modeling) and the vertical dimension is teaching resource types (e.g., virtual scenes). Each cross-unit 
labels the contribution degree of resources to capabilities (e.g., “engine virtual disassembly and assembly” contributes 0.8 
to “equipment operation capability”).

2.3.3. Resource sharing mechanism: 
Shared knowledge graphs and case libraries are used—for example, the “fault diagnosis knowledge graph” in the AI 
Reflection link of the Cognitive Construction Loop shares the same source as the knowledge base of the intelligent 
diagnosis system in the Technology Empowerment Loop, and is updated synchronously through version control. The 
“One-Base Dual-Loop” system of Hunan Vocational College of Science and Technology increased the resource reuse rate 
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by 65% and reduced resource development cost by 40% through this mechanism.

2.4. Technical intervention logic of the AI-enhanced C2D2IO framework
2.4.1. Components and upgrade path of the framework
The AI-enhanced C2D2IO framework is an intelligent upgrade of the traditional CDIO model, adding “Co-creation” 
and “Intelligent Operation” links to form a five-stage closed loop of “Co-creation → Design → Virtual Debugging → 
Implementation → Intelligent Operation”. The core tasks and AI intervention points of each link are as follows:

(1) Co-creation: Demand analysis, scheme design, multi-objective optimization. AI generates 3-5 preliminary schemes 
based on knowledge graphs and uses reinforcement learning algorithms to balance performance-cost-efficiency 
conflicts (e.g., aerodynamic performance and structural strength optimization of high-speed train heads).

(2) Design: 3D modeling, control logic design. AI assists in parametric modeling (e.g., automatic generation of PLC 
ladder diagrams) and performs conflict detection (e.g., mechanism motion interference check).

(3) Virtual Debugging: Virtual-real linkage control, fault injection. AI accelerates simulation (GPU parallel computing 
shortens debugging cycle by 70%), automatically finds errors and generates parameter optimization suggestions.

(4) Implementation: Physical equipment operation, data collection. AI provides operation guidance and anomaly 
warnings (e.g., real-time monitoring of equipment vibration data and early warning of potential faults).

(5) Intelligent Operation: Fault diagnosis, predictive maintenance. AI integrates multi-modal data (vibration, 
temperature) for fault diagnosis and predicts Remaining Useful Life (RUL) based on LSTM networks.

2.4.2. Design of the AI-enhanced C2D2IO framework
The AI-enhanced C2D2IO framework is an intelligent upgrade of the traditional CDIO engineering education model, 
forming a five-stage closed loop of “Co-creation → Design → Virtual Debugging → Implementation → Intelligent 
Operation” by adding “Co-creation” and “Intelligent Operation” links. Each stage deeply integrates core tasks with AI 
technology: In the Co-creation stage, preliminary schemes are generated based on knowledge graphs, and multi-objective 
optimization of performance, cost and efficiency is achieved through reinforcement learning algorithms; in the Design 
stage, automation of parametric modeling and conflict detection is realized, assisting in PLC ladder diagram generation 
and mechanism motion interference check; in the Virtual Debugging stage, simulation is accelerated by GPU parallel 
computing, and automatic error finding and parameter optimization suggestions are generated, shortening the debugging 
cycle by 70%; in the Implementation stage, real-time operation guidance and anomaly warnings are provided, and 
potential faults are predicted by monitoring equipment vibration data; in the Intelligent Operation stage, multi-modal data 
(vibration, temperature) are integrated for fault diagnosis, and Remaining Useful Life (RUL) is predicted based on LSTM 
networks. Stages are seamlessly connected through the data middle platform—for example, design schemes directly serve 
as input for virtual debugging, and optimized parameters from virtual debugging are fed back to physical operation in the 
Implementation stage, forming a complete technical closed loop.

The core breakthroughs of the framework lie in reconstructing the technical intervention logic of engineering 
education, upgrading AI from an auxiliary tool to a cognitive agent, and achieving efficiency leapfrogs in three key links: 

(1) Scheme optimization: AI-generated multi-objective optimization schemes increase the balance efficiency of 
aerodynamic performance and structural strength of high-speed train heads by 40%; 

(2) Virtual debugging: GPU acceleration and automatic error finding compress the traditional physical equipment-
dependent debugging cycle from 2 weeks to 3 days; 

(3) Intelligent operation: Multi-modal diagnosis models increase fault identification accuracy from 65% (traditional 
manual) to 92%. Practice verification shows that after framework implementation, the proportion of teachers’ 
repetitive guidance tasks decreased from 45% to 20%, students’ complex engineering problem-solving ability 
score increased by 18.2 points, the proportion of real enterprise projects entering the classroom reached 60%, and 
the post adaptation period shortened from 5.9 months to 2.8 months—fully reflecting the synergistic effect of 
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“technology empowerment → cognitive upgrade → industrial adaptation”.

2.5. Role boundaries of teacher-ai-student tripartite interaction
2.5.1. Role positioning of tripartite subjects

(1) Teacher Role: Transforms from “knowledge transmitter” to “learning designer” (designs course modules and 
project tasks), “thinking guide” (guides high-order thinking and engineering ethics discussions), and “ethics 
mentor” (guides responsible use of AI technology).

(2) AI role: Acts as a “cognitive assistant” to automate 30%-45% of repetitive tasks (e.g., basic Q&A, homework 
correction); a “skill coach” to provide 24/7 virtual training guidance (e.g., real-time error correction in CNC 
programming); and a “resource steward” to recommend personalized learning paths (e.g., pushes cases based on 
ability portraits).

(3) Student role: Changes from “passive receiver” to “knowledge constructor” (actively explores digital twin scenes), 
“problem solver” (diagnoses industrial faults), and “innovative practitioner” (develops intelligent diagnosis tools).

2.5.2. Teacher-AI-Student Tripartite Interaction Mode
The teacher-AI-student tripartite interaction mode takes a triangular structure as the core framework, with three vertices 
corresponding to teachers, AI and students respectively. The three edge areas label three dynamic interaction modes: 
“Human-led, AI-assisted” (basic concept learning scenarios, AI agency degree < 0.4), “Human-AI Collaborative” (complex 
skill training scenarios, AI agency degree 0.4–0.65), and “AI-led, Human-assisted” (innovative practice scenarios, AI 
agency degree ≥ 0.65). Each mode area clarifies typical tasks and interaction rules: In the “Human-led, AI-assisted” 
mode, teachers lead teaching and AI provides standardized resources (e.g., 3D animation of equipment structure); in the 
“Human-AI Collaborative” mode, complex skill training is completed through human-machine division of labor (e.g., 
AI injects faults to train diagnostic capabilities, teachers guide analysis logic); in the “AI-led, Human-assisted” mode, AI 
deeply participates in innovative practice (e.g., generates optimization schemes based on knowledge graphs), and teachers 
focus on high-order thinking cultivation and engineering ethics guidance. This mode dynamically adjusts interaction 
relationships according to task complexity—when task complexity ≥ 0.65, AI undertakes main technical support, reducing 
teachers’ repetitive guidance time by 45% and achieving precise adaptation of human-machine collaborative teaching.

3. Design and development of an intelligent manufacturing curriculum teaching model
3.1. Curriculum system reconstruction of the “three-stage nine-step” teaching method
3.1.1. Overall architecture of the teaching method
The “Three-Stage Nine-Step” Teaching Method divides the teaching process into three progressive stages: Virtual 
Simulation Foundation, Production Line Collaborative Training, and Engineering Comprehensive Application, each 
containing three implementation steps to form a closed-loop curriculum system.

(1) Virtual simulation foundation stage (35% of total class hours): Focuses on basic operation and programming skills 
of single equipment, with steps: Equipment Cognition → Virtual Operation → Virtual-Real Verification. Basic 
concepts are established through AI interactive explanation (e.g., 3D animation demonstration of equipment 
structure) and virtual disassembly training (e.g., disassembly of CNC machine tool spindle unit); programming 
training (e.g., PLC logic programming) is conducted in a virtual environment, with AI providing syntax checks 
and logic optimization suggestions; skill transfer is achieved via virtual-real linkage verification (comparison of 
machining results under the same parameters). Practice in a vocational college shows that this stage increased 
students’ equipment structure cognition accuracy from 68% to 91%.

(2) Production line collaborative training stage (40% of total class hours): Cultivates multi-equipment collaboration 
and system debugging capabilities, with steps: Production Line Planning → Virtual Debugging → Virtual-
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Real Linkage. Production line layout is designed based on enterprise needs (e.g., annual output of 100,000 auto 
parts production line), with AI providing optimization suggestions using the Systematic Layout Planning (SLP) 
method; control logic is debugged on the digital twin platform, with AI injecting fault types to train diagnostic 
capabilities; virtual-real data synchronization is realized via OPC UA protocol to solve differences between 
physical equipment and virtual models (e.g., robotic arm positioning error <0.5mm).

(3) Engineering comprehensive application stage (25% of total class hours): Enhances engineering innovation 
and project management capabilities, with steps: Project Introduction → Scheme Implementation → 
Achievement Transformation. Real enterprise projects are introduced (e.g., intelligent detection unit upgrade 
and transformation), with AI assisting in requirement analysis and task decomposition. Functional verification is 
achieved through rapid prototype development and on-site debugging. Performance indicators are optimized (e.g., 
detection accuracy ±0.02mm) and transformed into teaching cases. A university case shows that the adoption rate 
of students’ project schemes reached 75% in this stage.

3.1.2. Flowchart of the “three-stage nine-step” teaching method
Figure 2 adopts a circular flow design, with the center labeled “Capability Cultivation Objectives” (Equipment Operation 
→ System Debugging → Engineering Innovation). The outer circle is divided into three stages, each containing three steps 
connected by arrows to form a closed loop: Virtual Simulation Foundation Stage is marked with Equipment Cognition 
→ Virtual Operation → Virtual-Real Verification; Production Line Collaborative Training Stage with Production Line 
Planning → Virtual Debugging → Virtual-Real Linkage; Engineering Comprehensive Application Stage with Project 
Introduction → Scheme Implementation → Achievement Transformation. Each step uses icons to distinguish task types 
(e.g., VR device icon for virtual operation) and labels typical cases and capability achievement indicators (e.g., “First-piece 
pass rate increased to 85% in the Virtual-Real Verification stage”). 

Figure 2. Flowchart of the “three-stage nine-step” teaching method. This teaching method realizes capability leapfrogging from basic operation 
to engineering innovation through three progressive stages, integrating real enterprise project cases into each stage, which increased students’ 
“1+X” certificate pass rate by 27 percentage points.

3.2. Virtual-real integration construction of digital twin teaching system
3.2.1. Overall architecture of the system
The digital twin teaching system adopts a four-layer architecture: Physical Layer → Data Layer → Model Layer → 
Application Layer:
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(1) Physical Layer: Consists of intelligent manufacturing training equipment (CNC machining centers, industrial 
robots, etc.), sensor networks (over 200 measurement points for vibration, temperature, etc., with 1kHz sampling 
frequency), and edge computing gateways, which preprocess data (filtering, feature extraction) and control 
synchronization accuracy < 1ms.

(2) Data Layer: Builds an industrial data middle platform, integrating real-time databases (InfluxDB for storing 
equipment operation data), relational databases (MySQL for storing teaching resources), and knowledge graph 
databases (Neo4j for storing fault cases), supporting 10TB storage capacity and a daily data increment of 400GB.

(3) Model Layer: Constructs multi-scale digital twin models, including geometric models (3D modeling accuracy of 
0.01 mm), physical models (material properties, mechanical characteristics), and behavioral models (kinematics, 
dynamics laws). Computational efficiency is improved through model lightweighting (70% reduction in polygon 
count via Level of Detail technology) and multi-physics coupling simulation.

(4) Application Layer: Provides four modules—virtual training, intelligent diagnosis, course management, and 
assessment evaluation—supporting multi-terminal access (PC, tablet, VR devices) with response time < 200ms.

3.2.2. Overview of the digital twin teaching system
The digital twin teaching system adopts a four-layer architecture (“Physical Layer → Data Layer → Model Layer → 
Application Layer”) to realize real-time mapping and deep interaction between physical equipment and virtual models. 
The Physical Layer deploys over 200 sensors (vibration, temperature, etc.) with 1kHz sampling frequency, preprocesses 
data via edge computing gateways, and controls synchronization accuracy < 1 ms; the Data Layer builds an industrial data 
middle platform integrating InfluxDB (10TB storage), MySQL, and Neo4j, supporting daily data increment of 400GB; 
the Model Layer uses multi-physics coupling modeling technology, achieving high-fidelity reproduction of over 85% 
industrial scenarios through LOD lightweighting (70% reduction in polygon count) with geometric modeling accuracy 
of 0.01mm; the Application Layer provides four modules (virtual training, intelligent diagnosis, course management, 
assessment evaluation) supporting multi-terminal access (PC/tablet/VR) with response time < 200 ms.

Through collaborative operation of the four-layer architecture, the system achieves breakthroughs in key technical 
indicators: data synchronization delay < 200 ms, virtual-real mapping error < 0.5 mm, and scenario reproduction rate of 
85%, providing core technical support for the “Three-Stage Nine-Step” Teaching Method. In teaching applications, real-
time data collected by the Physical Layer is processed by the Data Layer to drive dynamic updates of virtual scenes in the 
Model Layer, allowing students to conduct practical training (equipment operation, fault diagnosis) via the virtual training 
module in the Application Layer. Practice verification shows that the system increased students’ equipment structure 
cognition accuracy from 68% to 91%, reduced average fault diagnosis time from 112 minutes to 47 minutes, effectively 
solved pain points of insufficient traditional training resources and high costs, and promoted the transformation of 
intelligent manufacturing curriculum teaching to a “low-cost, high-fidelity, strong interaction” mode.

4. Exploration of practical paths for intelligent manufacturing curriculum teaching 
reform
4.1. Construction and application of industrial typical fault case library
4.1.1. Construction standards of the case library and knowledge graph building
The Industrial Typical Fault Case Library covers over 1200 fault scenarios in machinery, electrical systems, and control 
systems, adopting a three-dimensional classification system of “Equipment Type-Fault Level-Fault Mechanism”:

(1) Equipment type: 5 major categories (processing equipment, robotic equipment, etc.) and 20 subcategories;
(2) Fault level: 3 levels (component-level, unit-level, system-level);
(3) Fault mechanism: 4 major categories (mechanical faults like wear/breakage, electrical faults like short circuit/

grounding, etc.) and 32 subcategories.
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Case data collection follows a standardized template, including fault phenomena (text description, images, videos), 
cause analysis (fishbone diagram), solutions (maintenance steps, required spare parts), and preventive measures 
(maintenance cycle, monitoring parameters). A “Fault Phenomenon-Cause-Solution” knowledge graph is built based 
on case data, containing over 1200 entity nodes and 3500 relational links, supporting semantic reasoning (e.g., inferring 
“bearing wear” from “motor abnormal noise”).

4.1.2. Industrial typical fault case library
The knowledge graph of the Industrial Typical Fault Case Library constructs a network structure with “fault phenomenon” 
as the core node, using a four-layer association system of “Fault Phenomenon-Cause-Solution-Associated Equipment”. 
The core node “Motor Abnormal Noise” radiates via directed edges to nodes like “Cause” (bearing wear, shaft 
misalignment), “Solution” (replace bearing, re-align), and “Associated Equipment” (CNC machining center, industrial 
robot). Relationship types (e.g., “causes”, “solves”) are labeled between nodes, and node types are distinguished by color 
(red for fault phenomena, blue for causes, green for solutions).

The knowledge graph significantly improves fault diagnosis teaching efficiency: average diagnosis time for students 
reduced from 112 minutes to 47 minutes, with diagnosis accuracy increased to 89%. Its core values include:

(1) Building a standardized fault diagnosis logic chain to help students quickly master the “phenomenon-cause-
solution” analysis method;

(2) Realizing associated retrieval of fault cases to support transfer learning across equipment fault mechanisms (e.g., 
from CNC machining center motor faults to industrial robot motor faults);

(3) Providing knowledge support for intelligent diagnosis systems, automatically generating fault diagnosis reports by 
matching real-time data with the knowledge graph.

4.2. Construction technology of cloud-based intelligent teaching platform
4.2.1. Overall architecture and resource sharing mechanism of the platform
The cloud-based intelligent teaching platform adopts a Cloud-Edge-Terminal Collaborative Architecture:

(1) Infrastructure Layer: Deploys GPU servers (NVIDIA A100) and storage systems relying on provincial education 
data centers, realizing elastic scaling via OpenStack to support over 1000 concurrent users.

(2) Platform service layer: Integrates data middle platform (ETL tools, BI analysis), AI service engine (TensorFlow/
PyTorch frameworks), and digital twin engine (Unity3D cloud rendering) to provide model training and 
simulation acceleration services.

(3) Application service layer: Offers microservices like virtual training and intelligent diagnosis (Spring Cloud 
architecture), supporting PC/VR multi-terminal access.

The resource sharing mechanism uses a “provincial coordination + municipal sub-node” model: CDN acceleration 
caches popular resources (basic equipment models), reducing access latency for remote areas from 500ms to less than 
200ms; collaborative teaching tools support virtual classrooms (video conferences + whiteboard annotation), group 
collaboration (multi-user synchronous operation of digital twin models), and enterprise mentor remote guidance.

4.2.2. Architecture design of cloud-based intelligent teaching platform
The platform adopts a three-level distributed architecture of “Provincial Central Node-Municipal Sub-node-Terminal 
Device”, realizing efficient resource sharing and low-latency access via cloud-edge collaboration. Core functions focus on 
three modules:

(1) Resource management: Unifies storage and dynamic updates of over 1200 industrial fault cases and digital twin 
models, supporting adaptive loading across terminals;

(2) Collaborative teaching: Breaks time-space constraints with virtual classrooms, group collaboration, and remote 
enterprise mentor guidance;
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(3) Permission Control: Ensures data security and precise resource access based on role-permission models.
Practice verification shows the platform serves 127,000 students, reducing training costs to 17% of physical 

equipment (83% cost reduction), enabling remote area students to share high-quality virtual training resources, with post 
capability matching degree increased to 92.7%.

5. Evaluation and verification of teaching reform effects
5.1. Construction and application of the four-dimensional radar evaluation model
5.1.1. Dimension design and index system of the evaluation model
The Four-Dimensional Radar Evaluation Model quantifies teaching reform effects from four dimensions:

(1) Learning satisfaction: Uses a Likert 5-point scale combined with interaction data analysis (course participation, 
resource access frequency) to measure satisfaction with course content, teaching methods, environment, and 
teacher guidance.

(2) Capability achievement degree: Evaluates knowledge mastery (theoretical tests), skill proficiency (equipment 
operation standardization, fault diagnosis accuracy), and engineering literacy (safety awareness, team 
collaboration), referring to the Intelligent Manufacturing Capability Maturity Model (CMMM) five-level 
standard.

(3) Industry adaptation degree: Assesses via text similarity analysis of job requirements and course objectives (JD 
matching degree), post-adaptation period, enterprise satisfaction, and salary level.

(4) Innovation contribution degree: Counts academic innovation (patents, competition awards) and application 
innovation (technical service projects, economic benefits).

5.1.2. Comparison of the four-dimensional radar evaluation model
Figure 3 uses a radar chart format with four evaluation dimensions on the horizontal axis and standardized scores (0–100) 
on the vertical axis. Two radar curves are included: solid line for the experimental group (adopting the teaching reform 
plan) and a dashed line for the control group (traditional teaching). Specific scores are labeled for each dimension:

(1) Learning Satisfaction (Experimental:4.32/Control:3.56);
(2) Capability Achievement Degree (84.6/68.3);
(3) Industry Adaptation Degree (92.7%/75.3%);
(4) Innovation Contribution Degree (78/45).
The experimental group curve is significantly higher than the control group, especially in capability achievement and 

industry adaptation. The experimental group’s comprehensive score is 84.6, an increase of 23.9% over the control group, 
verifying the effectiveness of the teaching reform plan: post adaptation period shortened from 5.9 months to 2.8 months, 
with enterprise satisfaction reaching 4.6/5.
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Experimental Group 4.32 84.6 92.7 78
Control Group 3.56 68.3 75.3 45
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Figure 3. Comparison of the “four-dimensional radar evaluation model.”

6. Research conclusions and prospects
6.1. Key research findings
This study constructed a full-chain “Theory-Technology-Practice” solution for generative AI, empowering intelligent 
manufacturing curriculum teaching reform, with the following key conclusions:

6.1.1. Theoretical mechanism aspect
Proposed the “Dual-Loop Driving” Teaching Model, revealing the collaborative mechanism between the Cognitive 
Construction Loop and Technology Empowerment Loop, which enriches the theoretical system of educational 
technology. Established the AI-Enhanced C2D2IO Framework, clarifying the intervention logic of AI in links such as 
“collaborative(co-creation), virtual debugging, and intelligent operation”, expanding the methodology of engineering 
education.

6.1.2. Teaching model design aspect
Developed the “Three-Stage Nine-Step” Teaching Method and Digital Twin Teaching System, realizing capability 
progression from basic operation to engineering innovation. The system achieves 85% scenario reproduction rate, <0.5mm 
virtual-real mapping error, and supports multi-terminal access and high-concurrency processing.

6.1.3. Practice path aspect
Built an industrial typical fault case library with over 1200 cases and a cloud-based platform with the “Provincial 
Coordination + Municipal Sub-node” model, realizing cross-regional resource sharing. Through the mechanism of 
integrating enterprise projects into classrooms, 60% of core courses incorporated real projects, and the post-capability 
matching degree increased to 92.7%.

6.1.4. Effect evaluation aspect
Verification via the “Four-Dimensional Radar Evaluation Model” shows that the teaching reform increased students’ 
capability achievement degree by 23.9%, shortened the post adaptation period to 2.8 months, achieved an enterprise 
satisfaction score of 4.6/5, and significantly improved innovation contribution (0.32 patents per capita).
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6.2. Research limitations and future prospects
6.2.1. Research limitations
Sample representativeness, duration of long-term effect tracking (3 years), and adaptability to technology iteration 
(updating of digital twin systems).

6.2.2. Future prospects
(1) Expand the sample size to verify the model’s universality.
(2) Construct a dynamic adjustment mechanism of “industrial demand-curriculum content”.
(3) Deepen research on human-machine collaboration ethics (algorithm bias correction, data privacy protection).
(4) Promote the industrialization of results (development of standardized teaching products).
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