

Rapid Screening of Irregular Antibodies before Blood Transfusion Based on Microfluidic Chip Technology

Hongyu Liang¹, Qing Liu^{2*}

¹Department of Transfusion, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China

²Department of Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China

**Author to whom correspondence should be addressed.*

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited

Abstract: To enhance the accuracy and efficiency of pre-transfusion irregular antibody screening, this study integrates microfluidic chip technology with transfusion screening requirements. We designed an integrated screening chip and optimized the reaction system and operational workflow. Performance validation demonstrated that the detection limits for anti-E and anti-Le antibodies were ≤ 0.5 IU/mL, ≤ 0.8 IU/mL, with specificity $\geq 98\%$. The single-sample testing cycle was completed within 30 minutes using only 10 μ L of sample. Clinical testing showed a 3.12% antibody detection rate in patients undergoing multiple transfusions, achieving 99.8% consistency with conventional blood bank methods. Post-application cross-matching missed detection rate was $\leq 0.1\%$, and transfusion adverse reactions decreased by 30%, providing efficient technical support for clinical transfusion safety with promising application prospects. As a cutting-edge interdisciplinary technology integrating microelectronics, fluid mechanics, chemistry, and biology, microfluidic chip technology has experienced rapid development over the past decades. It has demonstrated significant application potential in medical diagnostics, biological research, and chemical analysis, emerging as one of the most prominent research hotspots in both scientific and industrial fields.

Keywords: Microfluidic chip; Blood transfusion screening; Irregular antibodies; Clinical application; Blood transfusion safety

Online publication: December 20, 2025

1. Introduction

Blood transfusion safety serves as the cornerstone of clinical healthcare, with irregular antibody detection gaps being the primary risk factor for hemolytic transfusion reactions. Traditional screening methods face challenges including lengthy testing cycles, excessive sample consumption, and cumbersome procedures, making them ill-suited for emergency transfusions or large-scale screening needs. As early as the late 20th century, Chinese universities and research institutions began exploring fundamental theories and technologies for microfluidic chips. Notably, Wang Shili from Northeastern University pioneered spectral detection techniques in microfluidic analysis. Leveraging miniaturization and integration advantages, microfluidic chip technology has demonstrated exceptional sensitivity and efficiency in medical testing.

Addressing the critical need for pre-transfusion antibody screening, this study developed a specialized microfluidic screening system through structural design, system optimization, and performance validation. By overcoming technical bottlenecks in conventional methods, the innovation aims to provide clinicians with precise and rapid screening solutions, thereby strengthening the first line of defense for blood transfusion safety.

2. Microfluidic chip technology foundation and blood transfusion screening needs adaptation

2.1. Core principles of microfluidic chip technology

Microfluidic chips, developed in analytical chemistry during the 1990s, integrate fundamental operational units from biological and chemical fields into compact chips. Composed of various reservoirs and interconnected microchannel networks, these devices significantly reduce sample processing time while maximizing reagent efficiency through precise liquid flow control, effectively consolidating laboratory functions onto a single chip ^[1]. The core technology involves integrating microchannels, reaction chambers, and detection modules onto chip substrates. By manipulating fluids at nanoliter to microliter scales, it enables integrated experimental procedures including sample pretreatment, reaction incubation, and signal detection. This system leverages unique physicochemical properties of fluids in microscale environments combined with precision microfabrication techniques. It precisely controls sample-to-reagent ratios, reaction durations, and temperature parameters, while capturing reaction signals through optical and electrochemical characterization methods to achieve qualitative and quantitative analysis of target substances. Essentially, this represents a miniaturized, integrated, and automated technical framework that streamlines traditional laboratory workflows.

2.2. Application characteristics of microfluidic chip technology in medical testing

Microfluidic chip technology demonstrates significant advantages in medical testing. Firstly, its miniaturized devices and consumables eliminate the need for large laboratory equipment, meeting the portability requirements of point-of-care testing (POCT) scenarios while fulfilling clinical emergency needs for rapid testing. Secondly, the highly automated nature of the technology reduces manual operations through its integrated micro-structure design, minimizing human errors while enabling high-throughput parallel detection of multiple indicators. This allows simultaneous screening of various antibodies or pathogens on a single chip ^[2]. Additionally, the technology features low sample consumption, rapid reaction speed, and high detection sensitivity, effectively capturing low-concentration target substances. With minimal reagent usage and controllable testing costs, it addresses dual demands for large-scale population screening and clinical precision testing.

2.3. Core technical requirements for irregular antibody screening before blood transfusion

Irregular antibodies specifically refer to all blood type antibodies except anti-A and anti-B, primarily triggered by blood type incompatibility, which subsequently induces acute hemolytic transfusion reactions. Pre-transfusion screening for irregular antibodies is a critical component in ensuring clinical transfusion safety, with its technical requirements focusing on three dimensions. In terms of accuracy, it must precisely detect various irregular antibodies such as anti-E and anti-Le to prevent hemolytic reactions caused by missed detections, particularly meeting the high-sensitivity testing needs of patients undergoing multiple transfusions. Regarding efficiency, the technology must accommodate the time-sensitive demands of clinical emergency transfusions by rapidly completing screening processes while supporting parallel processing of large sample batches, aligning with both routine screening requirements at blood banks and urgent blood demand scenarios. From a practical standpoint, the technology should feature user-friendly operation and stable results, adaptable to various medical institutions and blood bank application scenarios. It must also be compatible with multiple serological testing reaction media to ensure comprehensive coverage of irregular antibodies, thereby reducing testing costs and technical barriers.

3. Design and performance verification of microfluidic chip screening technology

3.1. Structure design and functional zoning of screening chip

The screening chip's structural design is centered around the complete process of pre-transfusion antibody screening, utilizing multi-layer microfabrication technology to construct integrated functional zones^[3]. The sample pretreatment area features microfiltration channels with pore sizes controlled between 2–5 μm , enabling rapid separation of red blood cells and serum in blood samples while preventing interference from impurities. The reaction chamber area adopts an array design, with each chamber containing 50–100 nL of volume preloaded with microbeads coated with specific antigens targeting common irregular antibodies such as anti-E and anti-Le. Dedicated blank and positive control chambers are also reserved. The fluid control section integrates microvalves and micropumps, delivering samples and reagents precisely through pneumatic drive at 1–5 $\mu\text{L}/\text{min}$ to ensure thorough reaction mixing. The detection zone incorporates an optical detection module compatible with agglutination reactions, enabling real-time monitoring of signal changes via laser scattering. The chip employs polydimethylsiloxane (PDMS) and glass-bonded materials that combine biocompatibility with optical transparency, ensuring both reaction stability and signal detection performance.

3.2. Construction of screening experiment reaction system

The screening experiment focused on optimizing the reaction system to enhance antibody detection specificity and sensitivity, with particular attention to sample-to-antibody ratio and reaction conditions. A 10 μL serum sample was diluted 1:2 with buffer solution and injected into the reaction chamber to ensure antibody concentration remained within the detection range. The reaction system utilized purified red blood cell antigen-coated microbeads (1–2 μm particle size) at 50 $\mu\text{g}/\text{mL}$ to optimize antigen coating efficiency. A 0.5 mg/mL complement enhancer was added to boost IgM antibody agglutination signals. The reaction temperature was maintained at 37 °C via the chip's built-in heating module, with a 15-minute incubation time ensuring sufficient antibody-antigen binding while meeting rapid detection requirements. The phosphate buffer solution (pH 7.4) contained 0.1% bovine serum albumin (BSA) to minimize nonspecific binding and improve assay specificity.

4. Performance verification of microfluidic chip screening technology

4.1. Sensitivity and specificity detection

The sensitivity evaluation employed gradient-diluted antibody samples with known concentrations, covering common irregular antibodies such as anti-E and anti-Le. The concentration gradient was set between 0.1–10 IU/mL, with 10 parallel samples prepared for each concentration. Using microfluidic chip screening technology, the detection limits and recovery rates were calculated. The requirements specified that the detection limit for anti-E antibodies should be $\leq 0.5 \text{ IU}/\text{mL}$, and for anti-Le antibodies $\leq 0.8 \text{ IU}/\text{mL}$, with recovery rates maintained between 90–110% to ensure effective capture of low-concentration antibodies. For specificity testing, 100 serum samples from individuals without blood transfusion history and negative antibody screening results, along with 20 known single-antibody positive samples, were analyzed using chip technology. Cross-reactivity rates and false-positive rates were statistically evaluated, requiring specificity $\geq 98\%$ and false-positive rates $\leq 2\%$ to avoid misjudgments caused by nonspecific binding. Simultaneously, the chip's ability to distinguish between different types of irregular antibodies was validated.

4.2. Assessment of detection speed and efficiency

The detection speed evaluation uses the single-sample cycle as the core metric, recording the total time from sample injection to result output. It requires a single-sample cycle duration ≤ 30 minutes, representing a 50% reduction compared to traditional antiglobulin methods, thus meeting clinical emergency transfusion time requirements. For efficiency evaluation, batch testing was conducted using 300 clinical serum samples divided into three parallel groups of 100 samples each. The continuous detection capability and intra-batch error of the chip were statistically analyzed, requiring 40–60

samples per hour with an intra-batch coefficient of variation $\leq 5\%$. Additionally, the chip's stability was verified through continuous operation of the same positive control sample for 8 hours, ensuring signal intensity fluctuations $\leq 8\%$ to maintain detection consistency during large-scale screening processes^[4].

4.3. Comparative analysis with traditional screening methods

A comparative analysis was conducted between the traditional saline method and indirect antiglobulin assay (IAT) using 2,432 clinical transfusion patient samples tested with three methods. Results showed that the microfluidic chip technology achieved a positive detection rate consistent with IAT, significantly outperforming the saline method. In terms of testing time, the chip technology required an average of 25 minutes, substantially shorter than IAT's 60 minutes and saline method's 40 minutes. Regarding sample volume, the chip technology consumed only 10 μL of serum, 1/5 of the traditional method, reducing reagent consumption by 60%. Additionally, the chip technology demonstrated antibody detection sensitivity comparable to IAT in multiple transfusion patients, while offering simplified procedures. It eliminated manual washing and incubation monitoring, reducing human error rates to below 1% compared to traditional methods' 3–5%.

5. Clinical application value and promotion of microfluidic chip screening technology

5.1. Clinical sample applicability test

Blood transfusion remains a vital therapeutic approach in modern medicine. Despite advancements in medical technology, it continues to serve as an indispensable clinical intervention with significant therapeutic value. Conditions such as pregnancy, violent injuries, and traumatic surgeries often lead to excessive blood loss, requiring prompt transfusion therapy to preserve patients' health and facilitate recovery. A clinical sample suitability study involving 1,000 participants from multiple groups, including multiple transfusion recipients, voluntary blood donors, and patients with rare blood types, revealed that the chip technology achieved a 3.12% detection rate for irregular antibodies in multiple transfusion patients, aligning with clinical incidence rates. Notably, 29 cases of anti-E antibodies were identified, matching common clinical antibody distribution patterns. The screening results for voluntary donors showed 99.8% consistency with conventional blood bank testing methods, with a false positive rate of merely 1.2%, demonstrating suitability for large-scale population screening.

5.2. Feasibility analysis of technology extension

The technology demonstrates multi-dimensional feasibility. In hardware compatibility, the chip manufacturing employs mature PDMS microfabrication technology, enabling batch production with single-chip costs kept below 50 yuan. The accompanying testing instruments feature compact designs that require no specialized lab environment, meeting the spatial requirements of blood banks, hospital laboratories, and primary healthcare institutions. Regarding operational accessibility, the optimized standardized process requires no technical expertise, basic training enables staff to operate the system, effectively addressing technical personnel shortages in grassroots facilities. Additionally, automated report generation reduces human interpretation errors and simplifies quality control. From policy and market perspectives, the urgent clinical demand for blood transfusion safety and blood banks' strong need for efficient screening technologies align with the development trend of POCT medical equipment. Leveraging existing blood bank testing networks and medical procurement channels facilitates promotion, with initial pilot applications in regions like Shenzhen and Jinhua before nationwide expansion.

6. Epilogue

The microfluidic chip-based screening technology developed in this study achieves precision, efficiency, and

miniaturization in irregular antibody screening before blood transfusion. Outperforming traditional methods in performance, it demonstrates excellent clinical applicability and scalability, significantly reducing transfusion risks. By automating processes to minimize human errors, this technology offers cost-effective solutions adaptable to medical institutions of all levels, providing a novel technical pathway for blood transfusion safety. Analysis of patents from key enterprises in the microfluidic chip industry reveals technical trends, corporate innovation capabilities, and strategic layouts, offering valuable insights for other companies, research institutions, and investors in the sector.

Disclosure statement

The authors declare no conflict of interest.

References

- [1] Michael Q, Li B, 2025, Single-Cell Desorption Electrospray Ionization–Mass Spectrometry (DESI-MS) Based on Microfluidic Printing. *Analytical Laboratory* [J/OL]: 1–12.
- [2] Su X, Zhu J, Guo Y, et al., 2025, Development of a Portable Nucleic Acid Rapid Extraction Device Based on Microfluidic Chips. *China Frontier Health and Quarantine Journal*, 48(05): 477–481.
- [3] Chu X, Zhang L, Ma Q, et al., 2025, Fabrication of Composite Functional Microspheres via Microfluidic Chip Droplet Templating Method. *Chemical Engineering Progress* [J/OL]: 1–27.
- [4] Yuan H, Song G, Qi X, et al., 2025, Microfluidic Technology-Driven Synthetic Biology and Biomanufacturing: Research Progress and Prospects in Methods and Applications. *Journal of Biotechnology* [J/OL]: 1–26.

Publisher's note

Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.