

Technology as a Constructivist Partner: Enhancing Language Proficiency and Learner Engagement in Higher Education EFL

Hongzhuo Zhang*

School of Foreign Languages, University of Science and Technology, Liaoning, Anshan 114000, Liaoning, China

*Corresponding author: *Hongzhuo Zhang, 913848280@qq.com*

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited

Abstract: This paper proposes and empirically validates a constructivist-informed model that positions technology as an active partner in higher education EFL teaching. By integrating interactive whiteboards (IWBs) with smart teaching platforms, this model operationalizes three interconnected constructivist principles: social co-construction, situated exploration, and scaffolded knowledge building. A one-semester mixed-methods study employing pre-/post-tests, platform analytics, and student journals demonstrates significant improvements in language proficiency and engagement. The findings indicate that this theoretically grounded model effectively bridges the practice-theory gap in educational technology, offering a coherent model for moving from tool-centric to partnership-centric integration. The study demonstrates that when technology is strategically aligned with pedagogical principles, it transcends its conventional role as a mere delivery mechanism to become a dynamic participant in the learning process, facilitating environments where language competence develops through authentic use and social interaction.

Keywords: Technology-mediated learning; Constructivism; Higher education EFL; Language proficiency; Learner engagement

Online publication: September 26, 2025

1. Introduction

1.1. The digital imperative in EFL: From passive tool to active partner

Against the backdrop of China's national strategy for educational digitalization, the widespread construction of smart classrooms and the adoption of integrated smart teaching platforms have laid a robust physical and digital foundation for pedagogical innovation. Platforms like Xuexitong, Yuke Tang (Rain Classroom), and the Blue Pigeon System represent this trend, moving beyond mere content delivery to offer comprehensive course management, real-time interaction, and AI-enhanced learning support. Their large-scale application has transformed the technological landscape of Chinese higher education, shifting the focus from hardware provision to the delivery of contextualized, data-informed teaching and learning services. This evolution provides a tangible and mature context for investigating how technology can be repositioned from a passive tool to an active, constructivist partner in the EFL classroom.

Yet, the pedagogical application of this technology has not yet fully realized its potential. When these tools are used primarily for one-way content dissemination, this one-way use significantly underutilizes their capacity to foster

interactive, student-centered learning. Consequently, this advanced infrastructure presents a critical opportunity, and imperative to move beyond technical adoption towards a fundamental pedagogical transformation. This paper argues for a paradigm shift: from conceptualizing technology as a passive tool to recognizing it as an active, collaborative partner in the language learning process. This shift is strategically aimed at optimizing several core areas in higher education EFL instruction: enhancing student engagement, integrating isolated skill practices, and creating more opportunities for authentic language use within institutional settings.

The “technology as partner” metaphor suggests a synergistic relationship where digital tools do not simply deliver instruction but actively mediate and shape the learning experience itself. In this model, technology creates the conditions for social interaction, provides contexts for meaningful communication, and offers adaptive support, thereby becoming an integral agent in the cognitive and social processes of language acquisition. This repositioning moves beyond the augmentation of existing practices and toward the redefinition of learning tasks and environments, aligning with the higher levels of technology integration models such as SAMR (Substitution, Augmentation, Modification, Redefinition).

1.2. The constructivist opportunity: Theoretical foundation for partnership

Constructivist learning theory provides the essential theoretical foundation for this reconceptualization. At its core, constructivism posits that knowledge is not transmitted but actively built by learners through experience, social negotiation, and reflection. When applied to language learning, this perspective emphasizes that linguistic competence and communicative ability are constructed through participation in authentic, socially mediated activities, not through the passive absorption of grammatical rules or vocabulary lists. Key principles include the social construction of knowledge, learning through situated, legitimate peripheral participation in communities of practice, and the importance of scaffolding to support learners within their Zone of Proximal Development (ZPD) ^[1-3].

Technology, when viewed through a constructivist lens, ceases to be a mere repository of information. Instead, it becomes a mediational means that can structure collaborative dialogue, simulate real-world contexts, and provide dynamic, responsive support ^[4]. This study develops and validates an integrated framework that translates these theoretical constructs into a practical, actionable model for EFL contexts in higher education. By deliberately orchestrating the synergy between IWBs and smart teaching platforms, the framework aims to create a learning ecosystem where technology’s role as a constructivist partner is fully realized, ultimately aiming to enhance both language proficiency and learner engagement through evidence-based strategies.

2. Theoretical foundations and framework development

2.1. Constructivism as guiding pedagogy

The proposed approach is explicitly built upon a triad of interconnected constructivist perspectives, each informing a specific pillar of the technological partnership.

Guided by sociocultural theory, which posits that learning originates in social interaction and is mediated through tools and signs within the ZPD, the approach emphasizes social co-construction ^[1]. Situated learning theory contends that learning is inseparable from authentic activity within a community of practice, informing our focus on situated exploration ^[2]. The practical mechanism enabling this is scaffolding, the contingent support provided to learners within their ZPD, which underpins our third pillar on scaffolded support ^[3].

These theories are dynamically interwoven: social co-construction occurs within authentic contexts and is enabled by targeted scaffolding. Together, they form a coherent pedagogical rationale for creating active, collaborative, and context-rich learning environments, which is a transition that technology can powerfully facilitate.

2.2. Technology in language learning: From cognitive tool to social mediator

The role of technology in language education has evolved significantly. Today’s integrative and technology-enhanced

language learning (TELL) perspective aligns with constructivism, viewing digital tools as cognitive and social mediators. Crucially, as social mediators, they reshape communicative practices by enabling asynchronous and synchronous collaboration, providing shared digital workspaces, and creating platforms for interaction that can be analyzed and reflected upon. IWBs transform from presentation devices into dynamic collaboration hubs, while smart platforms evolve into connected learning ecosystems that record and analyze the social process of learning.

2.3. Synergy between IWBs and smart teaching platforms in the “technology as partner” approach

The innovation of this approach lies in the deliberate orchestration of IWBs and smart teaching platforms into a synergistic ecosystem, aligning with the integrated hardware-software design emphasized in contemporary Chinese smart classrooms ^[5]. In such environments, a multi-screen setup (central and group displays) works in concert with a central smart platform, the system’s “brain”. This synergy is operationalized in our framework: the smart platform acts as the backbone for organization, resource distribution, and data analytics, while the IWBs (both central and group) serve as the public, collaborative interface for real-time interaction, synthesis, and scaffolding. The “technology as partner” model harnesses this integrated functionality by translating the three core constructivist principles into distinct, technology-mediated pedagogical workflows: Social co-construction leverages the platform’s capacity for asynchronous collaboration and the IWB’s function for real-time synthesis and public negotiation of meaning; Situated exploration utilizes the platform as a curated repository and distributor of authentic resources, and the IWB as an interactive stage for contextual analysis, annotation, and role-play; Scaffolded support combines the platform’s diagnostic analytics and automated feedback with the IWB’s role in delivering visualized, contingent, and socially-mediated scaffolding during whole-class instruction.

2.3.1. Pillar I: Facilitating social co-construction

This pillar, grounded in sociocultural theory, uses technology to amplify and document the social process of knowledge building. The smart platform functions as the collaborative engine before and after class, enabling activities like collaborative annotation, structured debates, or co-writing. These interactions create a valuable digital trace of dialogue and negotiation. During class, the IWB acts as the synthesizing stage. Teachers project these collaborative outputs, and the class engages in higher-order analysis, such as categorizing arguments or refining ideas. Students can physically interact with the board. This public, multimodal process makes collective thinking visible and transforms group work into a whole-class knowledge-building event ^[6].

2.3.2. Pillar II: Enabling situated and active exploration

Derived from situated learning theory, this pillar uses technology to bridge the classroom and the real world. The smart teaching platform serves as a curated library of authentic multimedia resources. Students access these to prime for deeper, in-class exploration. During class, the IWB transforms these resources into an interactive situated environment where materials are actively dissected. Using the IWB’s annotation tools, the class can collaboratively label scenes, analyze dialogue, or dub scripts. This approach transforms passive viewing into an engaged, contingent interaction with authentic language material ^[7]. Through collaborative practices of dissecting and re-enacting authentic content on a shared interface, students engage in a negotiated experience ^[8]. In this process, meaning and understanding are not passively received but are actively constructed through social participation within a community of learners.

2.3.3. Pillar III: Providing adaptive, scaffolded support

Informed by scaffolding theory, this pillar creates a dynamic support system that blends automated, data-informed feedback with responsive, teacher-mediated guidance. The smart platform establishes the diagnostic foundation by deploying tools such as pre-class quizzes and automated writing checkers. Crucially, it aggregates this data, visualizing learning gaps for the teacher. Building on this, the IWB serves as the primary medium for social and contingent scaffolding. For example, a teacher can project anonymized student writing onto the IWB for collaborative analysis, transforming individual struggles

into collective problem-solving. Furthermore, teachers can use the IWB to visually model structures or brainstorm vocabulary, providing just-in-time support directly responsive to the learners' ZPD.

3. Research methodology: A mixed-methods case study

3.1. Context and participants

To validate the proposed approach, a one-semester mixed-methods case study employing a quasi-experimental design was conducted in an authentic higher education EFL setting.

The study involved two intact first-year classes of non-English major undergraduates, both at a comparable intermediate proficiency level as confirmed by a standardized placement test and enrolled in the same compulsory English course. One class was assigned as the Experimental Group (EG, $n = 48$), implementing the full “technology as partner” approach. The other class served as the Control Group (CG, $n = 46$), which used a technology-supported but teacher-centered approach, primarily utilizing PowerPoint for instruction and the teaching platform (Xuexitong) only for file distribution and submission. The EG conducted lessons in a smart classroom configured to foster collaboration. This environment featured a central IWB for instructor-led demonstrations and synthesis, complemented by multiple IWBs dedicated to student groups. These group-based IWBs enabled students to collectively generate and manipulate content, such as articulating group viewpoints, constructing mind maps, and completing interactive exercises like matching and fill-in-the-blank tasks, seamlessly integrating with the central display via the Xuexitong platform. In contrast, the CG used a standard multimedia classroom equipped only with a projector for teacher presentations.

3.2. Intervention design and implementation

The intervention for EG was structured around a recurring six-phase instructional cycle applied to each thematic unit, such as “Technology and Society” or “Environmental Ethics”.

The cycle began with a Collaborative Goal-Setting & Preview phase, facilitated by both the platform and the IWB. In this phase, unit objectives and a provocative question were posted on the platform. Students then accessed authentic preview materials like articles and videos and contributed their initial thoughts to a shared online forum. These collective preview contributions were later displayed on the central IWB to formally launch the unit.

Next, the Situated Input & Analysis phase became the focus, centering on the central IWB. During class, core authentic materials such as a TED Talk or a news report were projected onto the IWB for the kind of interactive, multimodal analysis detailed in Pillar II of the approach.

This was followed by a Platform-centric Co-construction Task. Working in small groups, students used their dedicated group IWBs and the Xuexitong platform to engage in collaborative production tasks such as drafting a persuasive essay, creating a video presentation script, or preparing for a debate. The group IWBs served as immediate workspaces for brainstorming and organizing ideas (e.g., drawing mind maps), while the platform recorded all contributions and revisions throughout this process.

The subsequent Synthesis & Refinement phase leveraged the multi-IWB environment for distributed peer review. Groups displayed their outputs on their respective IWBs. Peers then rotated to review others' work, providing structured feedback via the smart platform's rubric. The teacher, facilitated by the platform's real-time feedback dashboard, could then highlight common issues or exemplary approaches on the central IWB for focused, whole-class scaffolding, applying principles from Pillars I and III.

The fifth phase involved Integrated Assessment & Feedback, utilizing both the platform and the IWB. Students submitted their final individual or group products via the platform. Feedback was multi-sourced, combining automated platform feedback on mechanics, peer feedback guided by rubrics, and teacher feedback on content and discourse. Common issues identified were then addressed in a follow-up, dedicated IWB session.

Finally, the cycle concluded with a Reflection & Metacognition phase on the platform. Students posted individual

reflective journal entries about their learning process, challenges encountered, and insights gained.

In contrast, the CG followed the same thematic units but with a traditional instructional structure. This structure typically consisted of a teacher-led PowerPoint lecture to explain vocabulary and texts, individual comprehension exercises, assigned individual writing for homework, and teacher-provided written feedback.

3.3. Data collection and analysis methods

To comprehensively evaluate learning outcomes and experiences, a triangulation of data sources was employed.

Quantitative data were collected through proficiency measures and engagement metrics. Identical pre- and post-tests were administered to both the EG and the CG. The speaking test, comprising a structured interview and picture description, was recorded and subsequently rated by two independent, blinded raters using a rubric that assessed fluency, accuracy, lexical range, and phonological control. The writing test, an argumentative essay, was scored similarly for content, organization, vocabulary, grammar, and mechanics. For engagement metrics, the smart teaching platform's analytics suite provided objective behavioral data for the EG, including average weekly time-on-task, login frequency, number of forum posts/comments, and completion rates for collaborative activities. For the CG, the homework submission rate served as a simple proxy indicator of engagement.

Qualitative data were gathered from multiple sources to gain an in-depth understanding of the learning process. First, EG students submitted 5–6 reflective journal entries per semester, which were thematically analyzed to explore their perceptions of engagement, collaboration, and self-efficacy. Second, artifact analysis was conducted on the digital traces of the EG's collaborative work, such as revision histories in shared documents and discussion forum threads to observe the processes of knowledge co-construction and peer interaction. Furthermore, selected classroom sessions from both groups were observed and documented using a structured observation protocol, focusing on teacher-student and student-student interaction patterns, technology use, and student on-task behavior.

During the data analysis phase, paired-samples *t*-tests were used to compare pre or post gains within and between groups for test scores and engagement metrics. Qualitative data were analyzed through iterative coding to identify emergent themes relevant to the research questions.

4. Case study findings, analysis, and discussion

4.1. Key findings: Proficiency, engagement, and learner experiences

The analysis revealed consistent, positive outcomes associated with the technology-as-partner approach across multiple dimensions.

As shown in **Table 1**, the EG demonstrated statistically significant greater gains from pre-test to post-test compared to the CG across all measured language proficiency metrics. The effect was most pronounced in areas directly tied to communicative competence, with the EG showing a mean gain of 0.9 in Speaking Fluency and 0.9 in Lexical Diversity, compared to 0.2 and 0.2 in the CG, respectively. The pronounced gains in Speaking Fluency and Lexical Diversity offer direct empirical validation for the efficacy of Pillar II (Situated Exploration) and Pillar I (Social Co-construction). These gains specifically resulted from pedagogical activities, such as interactive analysis of authentic media and collaborative peer review, that were designed to operationalize these constructivist principles through technology. Furthermore, platform analytics revealed a substantial and sustained increase in the EG's active learning time and participatory engagement throughout the semester.

Table 1. Comparison of pre-test and post-test performance between EG and CG

Metric	Experimental group (n = 48)	Control group (n = 46)	p value
Speaking fluency (1–5)	$3.2 \pm 0.5 \rightarrow 4.1 \pm 0.4$	$3.3 \pm 0.5 \rightarrow 3.5 \pm 0.5$	< .01**
Writing coherence (1–5)	$3.1 \pm 0.6 \rightarrow 4.0 \pm 0.5$	$3.2 \pm 0.6 \rightarrow 3.4 \pm 0.6$	< .01**
Lexical diversity (1–5)	$2.9 \pm 0.6 \rightarrow 3.8 \pm 0.5$	$3.0 \pm 0.6 \rightarrow 3.2 \pm 0.6$	< .01**
Platform engagement (min/week)	$14.3 \pm 2.5 \rightarrow 23.5 \pm 4.2$	$12.5 \pm 2.0 \rightarrow 12.8 \pm 2.1$	< .001***

Thematic analysis of journals, artifacts, and observations yielded three prominent themes: enhanced agency and ownership, development of collaborative metacognition, and increased willingness to communicate.

Students repeatedly described feeling like creators rather than receivers. One journal entry stated, “Before, our homework disappeared to the teacher. Now, our group’s draft is on the big screen, and everyone works on it. It feels like our ideas matter and become better together”.

The process of co-constructing and publicly critiquing work led students to articulate their thinking about language more clearly. Artifact analysis showed evolution from simple error correction to explanatory feedback.

Observations noted a marked increase in the EG’s in-class participation, including by typically quiet students. Journals linked this to reduced anxiety: “When we’ve already discussed it online in our small group, I feel more confident to speak up in front of the whole class”.

4.2. Discussion: The “partner” metaphor in practice, teacher roles, and limitations

The findings substantiate the efficacy of partnered pedagogy. The significant gains in the EG indicate that the structured integration of IWBs and smart platforms, guided by constructivist principles, creates a more effective learning ecosystem than using technology for transmission alone.

This model necessitates a transformed teacher role, from primary knowledge source to designer of learning experiences, facilitator of collaboration, and mediator of scaffolding. This requires significant pedagogical skill in task design, classroom management, and data-informed instruction. This transformation underscores a critical shift from technical mastery to pedagogical design, which resonates with the finding that effective IWB integration requires teachers to transcend mere technical operation and instead assume the role of a guide for classroom communication and collaboration [9]. In practice, this demands significant pedagogical skill in designing integrative tasks that leverage technology for indirect scaffolding, managing the dynamics of a technology-augmented classroom to orchestrate productive dialogue, and interpreting platform data to make informed, real-time instructional decisions.

Challenges such as technical issues, increased teacher preparation time, and notably, the need to pedagogically scaffold student collaboration underscore that success depends on sustained professional development focused on pedagogical change, not mere tool training.

This necessity for pedagogical engineering is perhaps most evident in managing the initial student unfamiliarity with new collaborative norms, a challenge observed in this study. This is not a mere technical obstacle to be circumvented, but an inherent part of the fundamental pedagogical paradigm shift from traditional individual learning to social constructivist learning. Effective management, therefore, does not aim to eliminate this phase but to pedagogically engineer it through deliberate instructional design. This requires teachers to act proactively as “architects” of the collaborative process, providing high-structured support at the initial stage. For instance, they can design clearly sequenced, role-specific introductory tasks; utilize the smart platform’s rubric functions to establish explicit expectations and assessment criteria for collaborative behaviors; publicly model and demonstrate high-quality peer feedback using the IWB; and offer temporary scaffolds for dialogue, such as sentence starters. These strategies essentially treat collaborative skills as core learning objectives equally important to language skills and requiring explicit instruction and support. The capacity of the

technological platform to record, visualize, and formatively assess the collaborative process provides unique support for this approach. Through such integrated design, the initial unfamiliarity is transformed into an observable, reflective, and developmental learning process. This represents a concrete embodiment and deepening of the Scaffolded Support (Pillar III) and Social Co-construction (Pillar I) principles in addressing real-world teaching scenarios within the proposed model.

Study limitations include its single-institutional, one-semester scope, cautioning against overgeneralization. The quasi-experimental design cannot control for all variables. Furthermore, effectiveness may be influenced by class size, specific platform features, and teachers' pedagogical readiness. While the one-semester duration was sufficient to capture the significant initial trends reported here, it necessarily represents an early phase in the longer curricular and pedagogical adoption curve. This aligns with observations that teachers may require more than a year to achieve fluency with new technologies and fully transform their practice ^[10]. Consequently, the present findings should be interpreted as robust evidence of the approach's initial efficacy and considerable potential, with the expectation that its full impact on both teaching and learning outcomes may further develop with sustained implementation and institutional support.

5. Conclusion

This study demonstrates that reconceptualizing technology as a constructivist partner through the synergistic use of IWBs and smart platforms can significantly enhance language proficiency and engagement in higher education EFL. The proposed approach provides a coherent, theory-grounded blueprint for this shift, moving beyond isolated tech use to design learning cycles where technology actively fosters social knowledge building, authentic exploration, and scaffolded development.

The implications for EFL pedagogy are substantial, offering a path to more dynamic, student-centered, and communicative environments. It argues for designing integrative tasks that leverage technological affordances in concert, guided by pedagogical goals.

Future research should

- (1) Investigate the approach's transferability across diverse settings
- (2) Explore its longitudinal impacts on language retention and learner autonomy
- (3) Examine the role of emerging technologies like AI tutors within this partnered ecosystem
- (4) Develop and evaluate situated professional development models, such as communities of practice that address the specific pedagogical design challenges identified here (e.g., orchestrating collaborative tasks), moving beyond platform tutorials to support teachers in implementing the core six-phase learning cycles.

Funding

2025 Undergraduate Teaching Reform Project of University of Science and Technology, Liaoning (Project No.: XJJG202546)

Disclosure statement

The author declares no conflict of interest.

References

- [1] Vygotsky L, 1978, *Mind in Society: The Development of Higher Psychological Processes*. Harvard University Press.
- [2] Lave J, Wenger E, 1991, *Situated Learning: Legitimate Peripheral Participation*. Cambridge University Press.

- [3] Wood D, Bruner J, Ross G, 1976, The Role of Tutoring in Problem Solving. *Journal of Child Psychology and Psychiatry*, 17(2): 89–100.
- [4] Lantolf J, Thorne S, 2006, *Sociocultural Theory and the Genesis of Second Language Development*. Oxford University Press.
- [5] Xu H, Xie J, Cheng X, et al., 2023, Exploration of the Construction of University Smart Classrooms in the New Era. *Research and Exploration in Laboratory*, 42(9): 239–244.
- [6] Kress G, 2003, *Literacy in the New Media Age*. Routledge.
- [7] Van Lier L, 2004, *The Ecology and Semiotics of Language Learning: A Sociocultural Perspective*. Kluwer Academic Publishers.
- [8] Wenger E, 1998, *Communities of Practice: Learning, Meaning, and Identity*. Cambridge University Press.
- [9] Beauchamp G, Whyte S, Alexander J, 2014, Researching Interactive Whiteboard (IWB) Use from Primary School to University Settings Across Europe: An Analytical Framework for Foreign Language Teaching. *Wales Journal of Education*, 17(1): 30–52.
- [10] Hennessy S, London L, 2013, *Learning from International Experiences With Interactive Whiteboards: The Role of Professional Development in Integrating the Technology*. OECD Publishing.

Publisher's note

Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.