

# Innovation in Corporate Internal Control and Auditing in the Big Data Environment

Meiting Tan

Guangdong Maoming Agriculture&Forestry Technical College, Maoming 525000, Guangdong, China

**Copyright:** © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited

**Abstract:** Against the backdrop of the accelerating digital economy, the corporate operating environment is characterized by high complexity and uncertainty. The widespread application of big data technology has fostered the deep integration of information flow, value flow, and resource flow, presenting new challenges and opportunities for corporate internal control and audit models. Based on relevant research findings domestically and internationally, combined with typical corporate practice cases, this paper systematically explores how big data technology drives the intelligent restructuring of corporate internal control systems and the digital transformation of audit processes. Research indicates that by building data driven risk early warning mechanisms, promoting process automation and platform integration, strengthening data governance capabilities, and cultivating interdisciplinary audit talent, enterprises can significantly enhance organizational agility, compliance levels, and governance effectiveness. Simultaneously, this paper also identifies current practical obstacles such as data security, lack of standards, and technical barriers, and proposes corresponding countermeasures. It aims to provide theoretical support and practical pathways for advancing the high-quality development of corporate internal control and audit models.

**Keywords:** Big data; Corporate internal control; Intelligent auditing; Digital transformation; Risk management and control; Organizational agility

**Online publication:** August 26, 2025

## 1. Introduction

With the continuous deepening of global digitalization, emerging information technologies such as big data, cloud computing, and artificial intelligence are profoundly reshaping corporate management paradigms and governance structures. Supported and driven by technological advancements, corporate internal control and audit systems are gradually gaining the technical capability to shift from “post event supervision” to “real time monitoring”, from “static control” to “dynamic response”, and from “partial review” to “full process penetration”. In recent years, institutions in the international accounting and auditing fields have consistently focused on the impact of digital technologies on corporate governance mechanisms, emphasizing topics such as intelligent risk control, automated auditing, enhanced data transparency, and optimized organizational structures. In technologically advanced developed countries, research and practice in this area are relatively leading. These attempts at digital transformation have not only significantly improved corporate operational management efficiency but also enhanced organizational agility and risk resilience by strengthening the information acquisition and processing capabilities of internal controls <sup>[1]</sup>. Some large enterprises in the United

States have widely adopted blockchain technology and automated audit platforms, effectively controlling audit costs and improving compliance assurance levels while enhancing financial reporting transparency and fraud identification capabilities. In financial institutions such as banks, the use of cloud computing and machine learning technologies to design fuzzy algorithms has achieved breakthrough application value in audit sampling, anomaly detection, and trend prediction<sup>[2]</sup>.

Research in China is also gradually deepening. Using large state-owned enterprises as samples, studies analyze the efficiency improvements brought by ERP integration and automated financial data collection during the upgrade of internal audit systems, while also pointing out that insufficient standardization, data silos between departments, and a shortage of professional talent remain constraining factors<sup>[3]</sup>. Some enterprises have further explored the application potential of data mining and distributed architecture in economic activity analysis, internal control evaluation, and risk early warning, emphasizing the enabling role of the “strategy-behavior-performance” closed-loop management mechanism for audit innovation<sup>[4]</sup>. In summary, achieving high-quality corporate development can rely on the construction of intelligent audit platforms, data-driven management models, and interdisciplinary talent teams. However, technological changes also bring new governance challenges, including increased data security risks, lagging compliance frameworks, insufficient system interoperability, and structural imbalances in human resources. Therefore, this paper aims to systematically review the theoretical basis, practical pathways, and real-world challenges of corporate internal control and audit innovation in the context of big data, proposing forward-looking reform directions and development strategies<sup>[5]</sup>.

## **2. Intelligent restructuring of corporate internal control empowered by big data**

### **2.1. Digital transformation and intelligent upgrade of management processes**

The core advantages of big data technology lie in its capabilities for large-scale data collection and storage, deep integration and consolidation of multi-source heterogeneous data, and efficient real-time data analysis and dynamic feedback mechanisms. In practical corporate applications, by fully deploying Enterprise Resource Planning (ERP) systems, widely installing Internet of Things (IoT) sensing devices, and establishing unified information integration and data middle platforms, enterprises can achieve “end-to-end” automated data collection from front end business touchpoints to back-end management functions.

This builds a dynamic, scalable data asset pool covering the entire value chain, laying a solid foundation for intelligent analysis and decision support. From a global practice perspective, many leading enterprises have gradually embedded big data technology deeply into their internal control systems, achieving digital mapping and intelligent management of key control points. Taking General Electric Company as an example, the company built an intelligent audit platform that runs through the entire business process, integrating data sources from various dimensions such as financial accounting, production operations, asset management, and compliance monitoring. With the help of advanced data visualization and intelligent analysis tools, management can monitor the operational status of various business units in real time, promptly identify potential risks, and issue warnings. After the platform was put into use, efficiency in identifying abnormal events improved, and the audit cycle significantly shortened, not only greatly enhancing the transparency of corporate financial information but also substantially improving overall operational efficiency. In the financial industry, a large commercial bank in Australia deeply integrated its existing ERP system with a cloud-based audit system, achieving unified collection and automated intelligent verification of cross-regional, cross-departmental transaction data. This efficiently handles a large number of repetitive, rule-based review tasks.

Combined with machine learning models, the system can automatically identify and flag high-risk transaction clues, significantly reducing costs associated with manual intervention and effectively minimizing operational errors. Domestically in China, Haier Group’s creation of the “IoT Financial Management and Control Platform” is a typical example. This platform integrates multiple functional modules such as financial sharing, full lifecycle contract management, procurement payment management, and fixed asset inventory, effectively breaking down information

barriers and data silos that previously existed between departments. It enables precise positioning and real-time warning of key risk points.

The audit team can conduct targeted verification and in-depth analysis based on multi-dimensional risk reports automatically generated by the system, thereby greatly enhancing corporate governance standardization and management decision support capabilities. Furthermore, a number of large domestic enterprises in China are actively exploring the integrated model of “Financial Shared Service Center + Intelligent Internal Control Platform”. By consolidating information on human resources, capital, materials, and business processes, they are building a data driven internal control system that runs through the entire corporate operation process<sup>[3]</sup>. This model enables internal control managers to dynamically adjust resource allocation and optimize governance strategies based on the data analysis results output by the system, thereby effectively promoting the transformation of core businesses towards greater agility and intelligence, and continuously enhancing the enterprise’s adaptability and competitive advantage in a complex market environment.

## 2.2. Proactive and systematic upgrade of risk management

Traditional risk management models primarily rely on static historical data and managerial experience, exhibiting significant lag in risk identification and response, as well as limitations in analytical perspective. In contrast, big data technology, through distributed computing frameworks, multi-dimensional association rule mining, and high-precision predictive modeling methods, endows enterprises with more systematic and forward-looking risk perception and assessment capabilities, thereby promoting a shift in risk management from passive response to active early warning. Existing research shows that if enterprises can effectively integrate internal operational data with external multi-dimensional data sources such as macroeconomic indicators, industry fluctuations, public sentiment dynamics, and policy and regulatory changes, they can construct risk matrices and early warning indicator systems with self-learning and dynamic update capabilities. Such models can not only identify conventional business risks but also respond quickly to systemic risks and sudden events, enhancing the enterprise’s operational resilience in complex environments. Taking credit risk management in the banking industry as an example, using fuzzy set theory and ensemble learning algorithms for multi-dimensional real time credit assessment of loan clients has become mainstream, using big data analysis to improve the granularity of customer risk classification.

Compared to traditional scorecard models, the ability to assess bad debts, detect fraud, and identify abnormal transactions has been significantly enhanced, providing an important reference for the implementation of intelligent risk control in financial scenarios. In industrial practice, Alibaba Group actively promotes the “Digital and Intelligent Connection” strategy, relying on the Alibaba Cloud platform to build cross-system data pathways and fully integrate data interfaces from internal business systems with external suppliers and partner financial institutions. This system achieves “end-to-end” visual monitoring of capital flow, information flow, and logistics in supply chain finance activities, supports dynamic assessment and early intervention of credit risks for upstream and downstream enterprises, thereby greatly enhancing the risk response speed and control precision of the entire ecosystem. It is important to note that although the data-driven risk control model has significant advantages, long-standing issues such as departmental barriers, system silos, and lack of standards have severely constrained the integration and utilization efficiency of corporate data resources. To address this challenge, in the big data environment, building an enterprise-level unified data center, establishing cross-system standardized interface protocols, and improving data sharing and permission management mechanisms have become key measures to enhance overall risk management effectiveness.

In this context, international mainstream ERP software vendors such as SAP and Oracle have deeply integrated data middle platform functions into their new-generation products, supporting the collaborative operation and real-time interaction of core modules such as finance, human resources, procurement management, and asset operations. Such platforms not only connect business and financial data links but also provide a solid technical foundation for building an integrated internal control system that combines business and finance and responds dynamically, further promoting the evolution of risk management towards digitalization and intelligence.

### **3. Practical challenges in data security and compliance governance**

#### **3.1. Data privacy protection and information security risks**

Although big data enhances information utilization efficiency, its widespread circulation also increases the risks of data leakage, misuse, and privacy infringement. In recent years, major global economies have successively introduced strict data regulations, such as the EU's General Data Protection Regulation (GDPR), China's Cybersecurity Law, Data Security Law, and Personal Information Protection Law, imposing clear compliance requirements on corporate data collection, storage, transmission, and use. Regulatory agencies have also strengthened their scrutiny of audit data security. Bodies like the U.S. Securities and Exchange Commission (SEC) and the UK Financial Reporting Council (FRC) require enterprises to ensure controllable data access permissions, traceable operations, and encrypted storage of sensitive information during the audit process. Enterprises need to establish sound data governance systems, implement data classification and tiered management, enforce the principle of least privilege, end-to-end encryption, and off-site backup mechanisms to guard against dual threats from internal personnel and external attackers.

#### **3.2. Lack of standards and system interoperability barriers**

Currently, some industries in China have not yet formed unified standards in areas such as audit information system interface standards, data format definitions, and metadata management, leading to difficulties in seamless connection between different systems and affecting the effectiveness of automated auditing and cross-platform data analysis. For example, inconsistent data structures between financial systems and business systems often result in high costs for audit data cleansing and low processing efficiency. Targeted solutions mainly include: first, industry associations taking the lead in formulating universal data standards and interface specifications; second, encouraging software developers to follow open architecture design principles to enhance system compatibility; third, promoting the establishment of regional or industry-level audit data exchange platforms to facilitate information sharing and collaborative governance. Building an open and interconnected data ecosystem can unlock the application potential of big data in the auditing field.

#### **3.3. Technical barriers and the digitalization dilemma of SMEs**

Compared to large enterprises with ample funds and advanced technology, the vast number of Small and Medium-sized Enterprises (SMEs) generally face more severe challenges in promoting intelligent auditing and digital transformation. These problems are in insufficient initial capital investment, making it difficult to afford the high costs of software and hardware procurement and system deployment; weak existing information infrastructure, with varying data standards across departments creating numerous "information silos"; and a severe shortage of interdisciplinary professionals proficient in both data technology and auditing. SMEs still rely heavily on manual bookkeeping and paper document flow as the core basis for auditing. Although some business processes have been digitized, the overall digital transformation process lags significantly. This phenomenon not only leads to low efficiency in financial data processing but also severely restricts the enterprise's ability to timely identify and warn of operational risks. Therefore, it is necessary to explore the construction of a multi-party collaborative, layered support system. First, the government should actively play a role in policy guidance and support, substantially lowering the digital threshold for SMEs through special financial subsidies, targeted tax reductions, technology upgrade rewards, etc., incentivizing them to actively connect to public cloud service platforms led by the government or industry alliances, acquiring advanced technological capabilities in a lightweight "pay-as-you-go" model. Second, professional third-party service providers can develop and promote modular audit toolkits tailored to the actual needs and affordability of SMEs. These toolkits should support rapid network deployment and perform basic data analysis tasks such as reconciliation, verification, compliance checks, and risk indicator monitoring, enabling SMEs to take the first step in intelligent risk control at a relatively low cost.

## 4. Practical pathways for intelligent audit innovation

### 4.1. Application of intelligent audit platforms and data analysis tools

Traditional audit models primarily rely on sampling checks, suffering from limited coverage, strong subjectivity, and low efficiency. Intelligent audit platforms supported by big data technology are gradually replacing manual verification, achieving automation, intelligence, and scalability in audit work. International “Big Four” accounting firms such as PwC, Deloitte are widely use professional data analysis tools like ACL and IDEA, combined with blockchain technology to ensure the immutability and traceability of audit evidence. Some enterprises have also built “audit sandbox” environments, integrating internal and external multi-source data for simulation analysis and anomaly detection in an isolated environment, ensuring the security and independence of the audit process. Representative domestic enterprises are also actively promoting intelligent audit construction. Taking Huaneng Group’s establishment of the “Audit Sharing Cloud Platform” as an example, this platform integrates core business data such as finance, contracts, and engineering projects, realizing the online, visual, and traceable nature of the audit process. The system supports automatic comparison of budget execution, contract fulfillment, and fund flows, promptly identifying deviations and generating warning alerts, significantly improving audit response speed and governance effectiveness.

### 4.2. Construction of continuous auditing and automated monitoring mechanisms

Traditional audits are mostly annual or quarterly periodic checks, making it difficult to cope with high-frequency, concealed fraudulent activities. Continuous auditing, relying on big data technology, achieves all-weather, full-scale monitoring of key corporate business processes, covering the entire process of “prevention - in-process control - post event accountability”. Huawei is a typical case. Its big data analysis system implements real-time monitoring of high-risk links such as procurement, contracts, and payments. Once suspicious behaviors like price anomalies, missing approvals, or duplicate payments are detected, the system immediately triggers warnings and pushes them to the risk control department. This mechanism has significantly reduced the incidence of fraud and continuously improved compliance management levels. Subsequently, the application of artificial intelligence and machine learning algorithms in anomaly detection, trend prediction, and pattern recognition can be further promoted, driving auditing from “passive response” to “active prediction”. Simultaneously, industry alliances are encouraged to build open audit platforms to promote data circulation and technology sharing, comprehensively enhancing the overall governance capability of the industrial chain.

### 4.3. Organizational structure and competency transformation of the audit team

The implementation of intelligent auditing relies not only on technical tools but also requires synchronous transformation of organizational structure and talent composition. Traditional auditors mostly have backgrounds in finance and accounting but often lack skills in data analysis, programming, and understanding information systems. In this field, overseas universities have already established interdisciplinary courses such as “Data Auditing”, “Information System Auditing”, and “AI and Risk Management” to cultivate compound talents with both technical capabilities and business insight. Some leading domestic enterprises have also intensified internal training, organizing auditors to learn tools like Python, SQL, and Tableau, promoting the team’s transition to a technology and business dual-driven model. Enterprises should establish dedicated audit technology teams responsible for the development, maintenance, and optimization of intelligent audit systems; simultaneously, they should optimize performance appraisal mechanisms, incorporating data analysis capabilities into the career development evaluation system for auditors to stimulate organizational innovation vitality.

## 5. Conclusion

This paper systematically explores the theoretical logic and practical pathways for corporate internal control and audit innovation in the big data environment. Research shows that digital technology is reconstructing the underlying logic of corporate governance: internal control is evolving from static rules to dynamic responses, and the audit function is

shifting from “post-event error detection” to “whole-process prevention and control”. Through process intelligence, risk datafication, platform integration, and talent composability, enterprises can effectively cope with the complex and changing operating environment, enhancing compliance, transparency, and organizational agility. Simultaneously, technological progress also accompanies new governance challenges. Issues such as data security, lack of standards, system silos, and talent gaps still need to be resolved through policy guidance, industry collaboration, and corporate independent innovation. In summary, internal control and audit innovation in the big data era is not only a technological upgrade but also a comprehensive renewal of the governance system. Adhering to the equal importance of technology drive and institutional guarantee will provide the greatest auxiliary utility for corporate sustainable and high-quality development.

## Disclosure statement

The author declares no conflict of interest.

## References

- [1] Chu M, Yong K, 2021, Big Data Analytics for Business Intelligence in Accounting and Audit. *Open Journal of Social Sciences*, 9(9): 42–52.
- [2] Bi Y, Ouyang Y, Sun G, et al., 2020, Big Data Audit of Banks Based on Fuzzy Set Theory to Evaluate Risk Level. *Journal on Big Data*, 2(1): 9–18.
- [3] Liu L, 2023, Research on Internal Audit Informatization Construction of J Company in Big Data Environment. *Frontiers in Business Economics and Management*, 7(2): 10–14.
- [4] Hezam Y, Anthonysamy L, Suppiah S, 2023, Big Data Analytics and Auditing: A Review and Synthesis of Literature. *Emerging Science Journal*, 7(2): 629–642.
- [5] Li J, Chen W, 2022, Research on the Application of Enterprise Internal Control and Risk Management Under the Background of Digital Intelligence. *BCP Business and Management*. 25: 171–175.

**Publisher's note**

*Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.*