

The Value, Challenge and Path of Artificial Intelligence Driving Rural Education Transformation

Zhucui Fu

School of politics, law & public administration, Yan'an 716000, Shaanxi, China

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: In the context of rural education facing challenges such as uneven development, scarcity of quality resources, and difficulties in personalized teaching that severely hinder the improvement of educational quality and the progress of rural revitalization, the emergence of artificial intelligence technology has provided a new solution to these issues. However, an in-depth exploration of AI applications in rural education reveals that its advancement is not without obstacles but faces multiple challenges including weak infrastructure, insufficient teacher capabilities, and difficulties in data privacy protection. Although the study does not specify particular research methods, it is inferred that discussions were conducted through comprehensive analysis of current conditions in relevant fields and case studies. The comprehensive research concludes that to effectively empower rural education with AI and promote its transformation towards intelligent and balanced development, it is essential to establish a systematic project involving multi-stakeholder collaboration. Government, enterprises, schools, and teachers must form a synergy and work together.

Keywords: Artificial Intelligence; Rural Education; Value; Challenges; Pathways

Online publication: July 26, 2025

1. Introduction

Amid the dual imperatives of China's rural revitalization strategy and educational digitalization initiatives, rural education confronts pressing challenges including teacher shortages, limited curriculum resources, outdated teaching methodologies, and constrained student development pathways. Meanwhile, the maturation of artificial intelligence (AI) technologies has revolutionized education through big data analytics and machine learning applications. Exploring AI-driven empowerment in rural education holds critical significance for advancing educational equity, enhancing teaching quality, and cultivating future-ready rural talent. While existing domestic and international research has addressed "AI+Education" implementations and digital transformation in rural education, most studies focus on macro-level theories or urban implementation scenarios, lacking systematic and empirical investigations into AI's comprehensive impact on rural education^[1]. To bridge this gap, this study employs literature analysis, case studies, and logical reasoning to systematically examine pathways and strategies for AI-driven rural education enhancement, providing actionable insights for regional educational development.

2. The core value of artificial intelligence driving rural education transformation

Amid the wave of rural revitalization and educational digitalization, artificial intelligence is emerging as a pivotal force in driving the transformation of rural education through its unique advantages, demonstrating multifaceted core values. AI plays an irreplaceable role in optimizing resource allocation, innovating teaching methodologies, addressing teacher shortages, and refining educational evaluation systems. This technological advancement injects powerful momentum into rural education reform, enabling students in these regions to access more equitable, high-quality, and personalized learning experiences^[2].

2.1. Optimize resource allocation and break through regional barriers

Rural areas have long faced challenges in accessing quality educational resources due to their remote locations and underdeveloped economies. The advent of artificial intelligence has broken down these geographical barriers. Through smart education platforms, premium courses from urban schools and instructional videos by renowned educators can now be delivered to rural classrooms across vast distances. Rural students can now access cutting-edge scientific knowledge and diverse cultural arts content through these platforms in real-time. This not only alleviates the shortage of educational resources in rural areas but also places them on an equal footing with urban students, creating broader opportunities for their growth and development^[3].

2.2. Reform the teaching mode and realize teaching according to individual aptitude

Traditional rural education often employs a one-size-fits-all teaching model, failing to meet the individualized needs of students. AI-powered adaptive learning systems, however, enable personalized education tailored to each student's aptitude^[4]. These systems analyze rural learners' cognitive patterns, academic progress, and interests to create customized learning content and pathways. For example, students with weak math foundations receive more foundational explanations and exercises, while high-achievers get access to advanced learning materials and challenging tasks. This personalized approach not only sparks students' interest but also boosts learning efficiency, allowing every learner to progress at their own pace^[5].

2.3. Supplement the shortage of teachers and improve teaching efficiency

Rural teachers often shoulder heavy teaching responsibilities, including lesson preparation, classroom instruction, grading numerous assignments, and delivering repetitive knowledge explanations. These tasks significantly impact teaching efficiency and quality. The emergence of AI-powered teaching assistants has alleviated these burdens for rural educators^[6]. These intelligent tools can efficiently grade assignments, analyze students' error patterns and knowledge mastery levels, then provide detailed feedback to teachers, enabling more targeted instruction. Additionally, they deliver engaging explanations through interactive methods, enhancing teaching effectiveness. This not only reduces workload pressure, allowing teachers to focus on innovative teaching approaches and personalized student guidance, but also elevates overall educational efficiency.

2.4. Improve education evaluation and build a diversified system

Traditional rural education evaluation systems predominantly focus on test scores, employing singular assessment methods that fail to comprehensively reflect students' learning processes and holistic development. By leveraging educational big data analytics, artificial intelligence enables comprehensive and dynamic tracking of rural students' academic progress^[7]. From classroom performance and homework completion to online learning duration and interaction frequency, every detail is precisely captured and analyzed. This data-driven approach allows the creation of a diversified, dynamic evaluation framework that prioritizes both learning outcomes and students' engagement and effort. Such an evaluation system provides objective, holistic feedback, helping learners identify their strengths and weaknesses while refining study strategies to foster well-rounded development^[8].

3. Practical challenges facing rural education empowered by artificial intelligence

While artificial intelligence brings transformation opportunities for rural education, it also faces many practical challenges in the process of empowerment, which mainly focus on three aspects: technology application, subject ability and institutional guarantee.

3.1. Technical application level: adaptation and infrastructure problems

Most current AI-powered educational products are developed for urban environments, falling short of rural education's practical needs^[9]. Rural students possess unique cognitive levels and learning characteristics, while different regions have distinct cultural backgrounds and living customs. However, existing AI education products often fail to adequately consider these factors, resulting in content that disconnects from rural students' actual circumstances and struggles to spark their interest or motivation^[10]. Moreover, infrastructure deficiencies in remote villages create significant barriers to implementing AI technologies. Insufficient network coverage remains a widespread issue, with some areas experiencing unstable or even non-existent connectivity, rendering internet-dependent smart education platforms unusable. Additionally, hardware shortages hinder technology adoption, as the lack of smart devices and servers makes it difficult for rural schools and students to conduct AI-based learning activities^[11].

3.2. The level of subject competence: the limitation of teachers and students

Rural teachers, as key implementers of AI education applications, generally lack digital literacy. Most rural educators struggle with operating AI tools, finding it challenging to utilize smart teaching software for lesson preparation and instruction, or interpret student learning data to adjust teaching strategies. This hinders the full realization of AI's potential in rural education. Rural students also face difficulties in using AI devices and systems. Some lack exposure to smart devices due to family environments, making them unfamiliar with electronic device operations. Moreover, their weak educational foundation makes them less adaptable to new learning systems and models, hindering their rapid integration into AI-based learning environments and ultimately affecting academic performance improvement^[12].

3.3. Institutional guarantee: policy and security ethics concerns

In terms of institutional safeguards, there is currently a lack of specialized policies to empower rural education through artificial intelligence. Regarding financial support, the absence of clear policy backing leaves rural schools struggling with funding pressures when adopting AI technologies and equipment, hindering large-scale implementation^[13]. Technical standards remain underdeveloped, with inconsistent quality of AI educational products lacking unified norms and evaluation criteria, creating difficulties for rural schools in selection and application. Data security and ethical risks also pose significant challenges. The collection, storage, and use of rural education data lack strict regulations and supervision, exposing vulnerabilities to privacy breaches. If students' personal information or learning records are leaked, it could lead to unnecessary troubles and harm. Moreover, algorithmic bias may undermine educational equity—if AI algorithms exhibit biases, they might result in unfair evaluations and recommendations for certain students, further exacerbating educational inequality.

4. Path selection for promoting the transformation of rural education through artificial intelligence

In the context of rural revitalization and educational digitalization, artificial intelligence has created unprecedented opportunities for transforming rural education. However, to achieve deep integration and effective empowerment of AI in rural education, feasible approaches must be explored from three key dimensions: technological adaptation, capacity enhancement, and institutional improvement.

4.1. Technology adaptation: build an artificial intelligence education program exclusive to rural areas

Rural education carries unique cultural contexts, curriculum demands, and student characteristics, making customized development of smart learning content and tools tailored for rural learners essential. Research teams should conduct thorough fieldwork to understand local cultural traditions, educational landscapes, and students' interests, then integrate these elements into smart learning materials to enhance their appeal and practicality. For instance, developing math word problems rooted in rural life scenarios or language courses incorporating local cultural heritage. Simultaneously, designing user-friendly smart learning tools with practical functions tailored to rural students' cognitive levels and learning habits can effectively reduce usage barriers^[14]. Strengthening infrastructure serves as the foundation for technology implementation. Governments should increase investment in rural network infrastructure, accelerate internet speeds in schools, and ensure stable high-speed connectivity. Additionally, establishing a "government-enterprise" collaborative hardware support mechanism—where governments provide policy incentives and funding subsidies while companies leverage technical expertise—to jointly promote smart hardware devices like tablets and interactive whiteboards in rural schools, thereby creating a robust hardware environment for AI-powered education applications.

4.2. Capacity building: Strengthening the cultivation of digital literacy of rural teachers and students

Rural teachers are pivotal drivers in AI education implementation, making systematic training imperative. Education authorities and schools should develop specialized AI pedagogy programs covering three key areas: 1) Technical proficiency through smart tool operation; 2) Instructional design to integrate AI with subject matter, fostering innovative teaching models; 3) Data analytics to interpret student performance metrics and optimize teaching strategies. These initiatives will enhance rural educators' digital literacy and pedagogical innovation capabilities. For students, schools should adopt diverse approaches like after-school programs and interest-based courses to prepare them for AI integration. Schools could establish AI tool clubs and organize hands-on workshops where students master practical applications. Simultaneously, daily instruction should incorporate self-directed learning principles, cultivating students' ability to explore digital resources independently – essential skills for thriving in today's digital learning environment^[15].

4.3. System improvement: build a comprehensive security system

The introduction of targeted support policies serves as a crucial safeguard for advancing AI-powered rural education. Governments should establish clear funding mechanisms to ensure sufficient resources for technology development, equipment procurement, and teacher training. Streamlined project approval processes will enhance implementation efficiency and quality. Scientific evaluation standards must be implemented to regularly assess AI education outcomes, enabling timely issue identification and strategy adjustments. Ensuring data security and ethical compliance forms the foundation for sustainable rural education development. Rigorous data management protocols should govern collection, storage, usage, and sharing processes while strengthening privacy protections against student data breaches. Algorithmic review systems must rigorously examine AI frameworks to eliminate biases and discrimination, thereby guaranteeing educational equity. Through comprehensive institutional safeguards, we can create a secure, healthy, and orderly environment for AI-driven rural education development.

5. Conclusion

As a pivotal engine for addressing rural education challenges, artificial intelligence is driving the transformation of rural education from traditional models to intelligent and personalized systems through balanced resource allocation and precise teaching innovations. This technology has become an indispensable core driver for achieving educational equity and rural revitalization. Looking ahead, with collaborative efforts across sectors, AI will be deeply integrated into rural education. High-quality educational resources will be more precisely delivered to rural areas, teaching methods will become more personalized and intelligent, digital literacy among rural teachers and students will see significant improvement, and

institutional safeguards will be further strengthened. Rural education is poised to achieve leapfrog development, narrowing the gap with urban education while cultivating more high-quality talents for rural revitalization, ultimately propelling rural areas toward prosperity.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Tan T, Tan H, 2024, The Internal Mechanism, Practical Constraints and Action Pathways of Digital Transformation in Rural Education in Ethnic Regions. *Educational Science Exploration*, (06):78-84.
- [2] Cai Y, 2024, Exploring Cybersecurity Education Pathways for Rural Schools in the Context of Digital Transformation. *Chengcai Road*, (33):49-52.
- [3] Wang L, 2024, Realistic Challenges and Countermeasures for Enhancing Digital Literacy of Rural Teachers in the Context of Educational Digital Transformation. *Journal of Smart Agriculture*, (17):131-134.
- [4] Shu L, 2024, Shortcomings in Moral Education during the Digital Transformation of Rural Education. *China Rural Discovery*, (02):44-47.
- [5] Mo D, 2024, Empowering Rural Revitalization through Vocational Education: Positioning, Transformation and Direction. *Journal of Nanning Vocational & Technical College*, (04):60-64.
- [6] Xie Q, Tang H, 2024, The Era Implications and Directional Exploration of High-Quality Development in Rural Education under Digital Transformation. *Lifelong Education Research*, (03):37-44.
- [7] Zhou J, Chang Y, 2024, Three Dimensions and Practical Approaches for Transitioning Rural Education under the Rural Revitalization Strategy. *Modern Educational Management*, (05):39-49.
- [8] Wang F, Yang B, 2025, The Vision and Implementation of Digital Transformation in Rural Basic Education. *Journal of Xihua Normal University (Philosophy & Social Sciences Edition)*, (01):67-79.
- [9] Hao X, Chen M, 2024, Practical Exploration of Digital Transformation in Rural School Education. *Primary and Secondary School Information Technology Education*, (01):36-37.
- [10] Ding J, Yang X, 2023, Connotation, Characteristics, Practical Challenges and Pathways of Digital Transformation in Rural Education. *Jiangsu Education Research*, (20):3-9.
- [11] Li X, 2023, Challenges and Pathways to Enhancing Digital Literacy of Rural Teachers in the Context of Educational Digital Transformation. *Cultural and Educational Materials*, (17):184-187.
- [12] Sun Z, 2023, Rural Teaching Research in the Context of Educational Digital Transformation: Opportunities and Pathways. *Digital Teaching in Primary and Secondary Schools*, (05):1.
- [13] Xu G, 2023, Order and Freedom in Rural Education Transformation Under Social Discipline. *Teaching and Management*, (18):19-24.
- [14] Zhou Y, Yao S, 2023, Challenges and Transformation of Rural Vocational Education in the Context of Rural Revitalization. *Continuing Education Research*, (01):85-88.
- [15] Qiu J, Wei J, 2021, Challenges and Transformation of Rural Vocational Education in the Context of Rural Revitalization. *Education and Vocational*, (16):85-89.

Publisher's note

Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.