Advances in Precision Medicine

ISSN: 2424-9106 (Online) ISSN: 2424-8592 (Print)

Linerixibat and the Future of Pruritus Therapy in Primary Biliary Cholangitis

Oishu He*

The University of Edinburgh, Edinburgh EH8 9YL, United Kingdom

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Cholestatic pruritus significantly impairs quality of life in Primary Biliary Cholangitis (PBS) and is often refractory to ursodeoxycholic acid. This review explores Linerixibat, a gut-restricted ileal bile acid transporter (IBAT) inhibitor, as a targeted therapy for PBC-associated pruritus. By selectively blocking IBAT in the terminal ileum, Linerixibat reduces systemic bile acid (BA) accumulation—a key driver of itch via MAS-related G protein-coupled receptor X4 (MRGPRX4) activation on sensory neurons. Clinical trials demonstrate Linerixibat's efficacy in lowering serum BAs and alleviating pruritus, with a safety profile characterized primarily by manageable, mechanism-driven diarrhea. Unlike IBAT inhibitors developed for paediatric cholestatic disorders (e.g., odevixibat for PFIC), Linerixibat is optimized for adult PBC. Future therapeutic strategies may involve combining Linerixibat with agents targeting BA homeostasis (e.g., dual FXR/TRG5 agonists like INT-767) or pruritus signaling (e.g., MRGPRX4 antagonists). Ongoing Phase III trials will further define its long-term role in PBC management.

Keywords: Linerixibat; Primary biliary cholangitis; Cholestatic pruritus; Ileal Bile Acid Transporter (IBAT) inhibitor; Bile acids; MRGPRX4; Targeted therapy

Online publication: September 26, 2025

1. Introduction

PBC is an autoimmune liver disease characterised by progressive intrahepatic bile duct destruction, leading to cholestasis, fibrosis, and eventual cirrhosis ^[1]. Advanced stages often necessitate liver transplantation, a resource-intensive intervention demanding lifelong immunosuppression due to rejection risk ^[2]. Among PBC's debilitating symptoms, cholestatic pruritus severely impairs patient's quality of life, causing sleep deprivation, fatigue, and in extreme cases, suicidal ideation ^[3–5]. First-line therapy with ursodeoxycholic acid (UDCA) slows disease progression but often fails to relieve pruritus ^[6,7]. This treatment gap reflects the complex pathophysiology of PBC-associated pruritus, where bile acid (BA) accumulation activates specific pruritogenic pathways ^[8–10]. These insights have led to drugs such as Linerixibat, a selective ileal bile acid transporter (IBAT) inhibitor that reduces systemic BA overload.

2. BA accumulation and pruritus in PBC: The role of IBAT

Cholestatic pruritus in PBC results from systemic BA accumulation due to impaired bile flow, leading to elevated

^{*}Author to whom correspondence should be addressed.

cytotoxic BAs such as deoxycholic acid (DCA), taurochenodeoxycholic acid (TCDCA) and chenodeoxycholic acid (CDCA) [11,12]. These BAs bind and activate the Mas-related G protein-coupled receptor X4 (MRGPRX4) on dorsal root ganglion (DRG) neurons [12]. Upon activation, MRGPRX4 couples to Gq proteins and stimulate phospholipase C (PLC), hydrolysing phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate (IP3). IP3 induces intracellular calcium release, depolarising DRG neurons and triggering action potentials that transmit itch signals to the central nervous system [12-14] (**Figure 1**). This mechanism is supported by findings that intradermal BA injection induces scratching in MRGPRX4-humanised mice [15]. In humans, BAs or MRGPRX4 agonists elicit histamine-independent pruritus [12]. Moreover, plasma BA levels positively correlate with itch severity in PBC patients, and pathological BA mixtures selectively activate MRGPRX4, implicating MRGPRX4 in cholestatic itch [12].

Central to this process is IBAT, which mediates sodium-dependent reabsorption of conjugated BAs in the terminal ileum, returning them to the liver via the portal vein to support digestion and lipid absorption, maintaining enterohepatic circulation ^[16,17]. IBAT activity relies on a sodium gradient generated by basolateral Na⁺/K⁺-ATPase to co-transport Na⁺ and BA from the intestinal lumen into enterocytes against their concentration gradient ^[18].

Structurally, IBAT contains seven transmembrane helices with an extracellular N- terminus and intracellular C-terminus [19,20]. Transmembrane helix 3 (TM3) contains critical aspartate residues (D122, D124) for Na+ and BA transport [21]. In PBC, IBAT is upregulated to compensate for low intestinal BA, as the body attempts to preserve enterohepatic circulation, which paradoxically increases systemic BA, sustaining MRGPRX4 activation and pruritus [12,22].

Beyond pruritus, excess BAs contribute to hepatic inflammation, fibrosis, and PBC progression [12,23-26], reinforcing BA reduction as a therapeutic strategy.

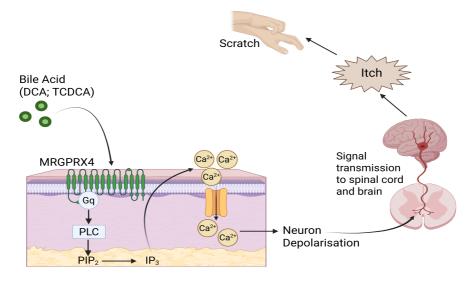


Figure 1. Bile Acid-Induced Itch Signalling via MRGPRX4 Activation

Figure 1. Bile acids such as deoxycholic acid (DCA) and taurochenodeoxycholic acid (TCDCA) activate the Mas-related G protein-coupled receptor X4 (MRGPRX4) on dorsal root ganglion (DRG) neurons. Upon ligand binding, MRGPRX4 couples with Gq proteins to activate phospholipase C (PLC), which hydrolyses PIP₂ into IP₃. IP₃ stimulates intracellular Ca²⁺ release, leading to neuronal depolarisation and transmission of itch signals to the spinal cord and brain. This cascade ultimately results in the itch sensation and the scratching response. Created in Biorender.com. Information from Yue et al. (2019 & 2021) [12,14].

3. Structure and mechanism of Linerixibat

Linerixibat (GSK2330672) is a potent, non-absorbable small molecule that selectively inhibits IBAT. Its structure features two terminal carboxylic acid groups and a zwitterionic structure (combining an ionizable amine linker with negatively charged carboxylates), which mimics the physicochemical properties of conjugated BAs [27,28]. These

polar, ionised groups confer high aqueous solubility while preventing passive diffusion across intestinal membranes, restricting Linerixibat to the intestinal lumen and minimising systemic absorption ^[28]. Linerixibat achieves high-affinity binding to sodium-coordinating aspartates in IBAT's TM3 ^[20,21]. By blocking BA reabsorption at the ileal brush border, Linerixibat diverts BAs to the colon for faecal excretion, disrupting enterohepatic circulation and reducing the BAs available for pruritogenic activation ^[29,30] (**Figure 2**).

Bile Acid Linerixibat Inhibition of ileal reuptake of bile acid via IBAT Enterocyte Bile Acid Increased faecal bile acid excretion lleal reuptake of bile acid via IBAT Bile Acid Bile acid return to liver via enterotropic circulation **Apical Surface** Enterocyte **Basolateral Surface**

Figure 2. Mechanism of Linerixibat in Disrupting Enterohepatic Circulation of Bile Acids

Figure 2. Linerixibat competitively inhibits IBAT on enterocytes in the terminal ileum. The black arrows represent the normal enterohepatic circulation, where bile acids (BA) are reabsorbed in the ileum and returned to the liver. The pink arrows represent the altered pathway following Linerixibat administration, where inhibition of IBAT blocks BA reuptake, leading to increased faecal BA excretion and reduced systemic BA levels. Created in Bioreder.com. Information from Hegade et al. (2016) and Hegade et al. (2017) [29,30]; Linerixibat chemical structure taken from PubChem (2025) [27].

4. Selectivity and therapeutic precision of Linerixibat

Linerixibat's selectivity arises from structural differences between IBAT and related transporters. Although the hepatic sodium-taurocholate co-transporting polypeptide (NTCP) shares moderate homology with IBAT, it lacks the TM3 aspartates required for sodium-coupled transport, making it insensitive to Linerixibat $^{[21]}$. Moreover, Linerixibat doesn't interfere with basolateral organic solute transporter OST α/β , which exports BAs from enterocytes into the circulation. These selective interactions reduce intestinal BA reabsorption while preserving systemic BA homeostasis, providing therapeutic effects with minimal off-target activities $^{[28,31,32]}$.

5. Clinical application of Linerixibat and other IBAT inhibitors

Linerixibat's gut-restricted action, non-absorbable design ensures localised action in the terminal ileum, minimising systemic effects while effectively reducing BA reabsorption via selective IBAT blockade ^[28,32–34]. Clinical trials consistently support its efficacy, with Phase II data showing significant serum BA and pruritus reduction without significant systemic toxicity ^[33,34,35]. The ongoing Phase III GLISTEN trial (NCT04950127) aims to optimise long-term dosing. So far, results demonstrate pruritus relief with consistent safety profiles ^[36,37].

The main side effect is colonic BA-induced diarrhoea. Unabsorbed BAs activate the Takeda G-protein-coupled receptor 5 (TGR5) on enterochromaffin cells and enteric neurons, promoting serotonin and calcitonin gene-related peptide release, accelerating colonic motility and reducing water reabsorption [38]. Additionally, high luminal BA concentration disrupts colonic epithelial tight junctions, enabling BA to reach the basolateral membrane and increasing fluid secretion [38]. These effects overwhelm colonic reabsorptive capacity, causing diarrhoea.

Elevated serum 7α -hydroxy-4-cholesten-3-one (C4), a biomarker of BA malabsorption, further confirms Linerixibat's action, and is a hallmark of BA malabsorption syndrome, where impaired BA uptake similarly causes diarrhoea ^[11,39,40]. This indicates diarrhoea is a mechanism-driven, non-toxic adverse effect. Diarrhoea is generally mild and self-limiting, consistent with Linerixibat's intestinal specificity ^[29,33,41].

Among IBAT inhibitors, therapeutic applications vary by age and pathology. Odevixibat is formulated for paediatric use in progressive familial intrahepatic cholestasis (PFIC), showing serum BA reduction and pruritus relief in infants as young as 3 months [42,43]. Maralixibat reduces serum BAs and pruritus in children with Alagille syndrome [44,45], but offers limited benefit in adult PBC [46]. Linerixibat is optimised for adult PBC, addressing ductal destruction rather than developmental defects, highlighting the importance of disease-specific therapy design.

6. Further directions: Combination therapies and novel targets

Linerixibat's potential may be enhanced by combining it with agents targeting hepatic inflammation and fibrosis. Preclinical studies demonstrate the efficacy of INT-767, a dual Farnesoid X receptor (FXR)/TGR5 agonist, in reducing BA toxicity while modulating inflammatory and fibrotic pathways [47] (**Figure 3**).

FXR activation suppresses hepatic BA synthesis via ileal small heterodimer partner (SHP) and intestinal fibroblast growth factor 15 (Fgf15) induction, both of which inhibit cholesterol 7α -hydroxylase (CYP7A1), the rate-limiting enzyme in BA production, reducing BA production ^[48,49]. FXR also promotes bicarbonate-rich bile secretion through carbonic anhydrase 14 (CA14) upregulation, neutralising residual BA and protecting hepatocytes ^[50]. BA excretion is enhanced by bile salt export pump (BSEP) upregulation triggered by INT-767, further reducing hepatocellular BA accumulation ^[47]. Moreover, FXR-mediated reduction in IL-1 β levels reduces autoimmune cholangiocyte damage ^[47,51].

Simultaneously, TGR5 activates cAMP signalling to supress NF- κ B activation and downregulate proinflammatory cytokines (TNF- α , IL-6, MCP-1) in macrophages and Kupffer cells, promoting an anti-inflammatory hepatic environment ^[52–55]. INT-767 also inhibits hepatic stellate cell activation and collagen deposition, attenuating fibrosis and slowing cirrhosis ^[47].

Dual FXR/TGR5 agonism provides synergistic benefits not achievable with selective activation of either receptor alone ^[56]. However, human trials are needed to assess pharmacodynamic interactions, safety, and optimal dosing. Meanwhile, MRGPRX4 antagonist such as EP547, currently under Phase II trials (NCT04510090), offering a complementary strategy for pruritus relief in PBC ^[57,58].

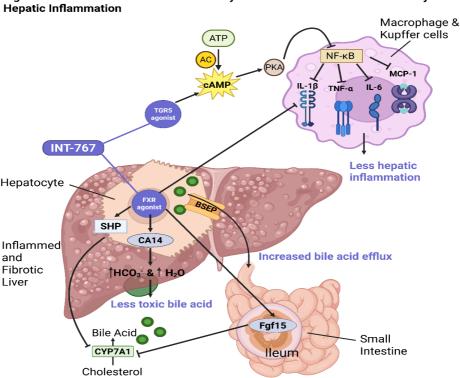


Figure 3. Dual FXR and TGR5 Activation by INT-767 Reduces Bile Acid Toxicity and Hepatic Inflammation

Figure 3. INT-767, a dual agonist of FXR and TGR5, reduces bile acid (BA)-induced toxicity and liver inflammation. FXR activation in hepatocytes induces small heterodimer partner (SHP) and intestinal fibroblast growth factor 15 (Fgf15), both of which suppress CYP7A1, the rate-limiting enzyme in BA synthesis. FXR also promotes bicarbonate-rich bile production via carbonic anhydrase 14 (CA14), and enhances bile acid excretion by upregulating the bile salt export pump (BSEP). These changes decrease intracellular bile acid accumulation and reduce toxicity. Simultaneously, TGR5 activation on macrophages and Kupffer cells increases cAMP via adenylyl cyclase (AC), activating PKA, which inhibits NF-κB signaling. This leads to downregulation of pro-inflammatory cytokines including IL-1β, TNF-α, IL-6, and MCP-1, creating an anti-inflammatory hepatic environment. Created in Biorender.com. Information from Baghdasaryan et al. (2011) and Pols et al. (2011) [47,55].

7. Conclusion

Linerixibat is a promising targeted therapy for cholestatic pruritus in PBC, leveraging selective IBAT inhibition to reduce systemic BA levels while avoiding systemic toxicity. Its gut-restricted mechanism ensures a favourable safety profile, with mild, mechanism-driven diarrhoea that could be mitigated through dose titration or adjunctive therapies targeting colonic BA effects. Compared to other IBAT inhibitors, Linerixibat is uniquely optimised for adult PBC. Further strategies may combine Linerixibat with agents such as INT767 or MRGPRX4 antagonists to address pruritus, inflammation, and fibrosis synergistically. Further research into the molecular mechanisms cholestatic pruritus is essential to fully understood and more effectively treat this complex and debilitating symptom.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Kaplan M, Gershwin M, 2005, Primary Biliary Cirrhosis. New England Journal of Medicine, 353(12): 1261–1273.
- [2] Neuberger J, 2003, Liver Transplantation for Primary Biliary Cirrhosis. Autoimmunity Reviews, 2(1): 1–7.

- [3] Bergasa N, 2005, The Pruritus of Cholestasis. Journal of Hepatology, 43(6): 1078–1088.
- [4] Huet P, Deslauriers J, Tran A, et al., 2000, Impact of Fatigue on the Quality of Life of Patients with Primary Biliary Cirrhosis. The American Journal of Gastroenterology, 95(3): 760–767.
- [5] Rishe E, Azarm A, Bergasa N, 2008, Itch in Primary Biliary Cirrhosis: A Patients' Perspective. Acta Dermato-Venereologica, 88(1): 34–37.
- [6] Carbone M, Nardi A, Flack S, et al., 2018, Pretreatment Prediction of Response to Ursodeoxycholic Acid in Primary Biliary Cholangitis: Development and Validation of the UDCA Response Score. The Lancet Gastroenterology & Hepatology, 3(9): 626–634.
- [7] Mayo M, Carey E, Smith H, et al., 2023, Impact of Pruritus on Quality of Life and Current Treatment Patterns in Patients with Primary Biliary Cholangitis. Digestive Diseases and Sciences, 68(3): 995–1005.
- [8] Kirby J, Heaton K, Burton J, 1974, Pruritic Effect of Bile Salts. British Medical Journal, 4(5946): 693–695.
- [9] Kode V, Yimam K, 2024, Cholestatic Pruritus: Pathophysiology, Current Management Approach, and Emerging Therapies. Current Hepatology Reports, 23: 123–136.
- [10] Varadi D, 1974, Pruritus Induced by Crude Bile and Purified Bile Acids. Archives of Dermatology, 109(5): 678.
- [11] Appleby R, Walters J, 2014, The Role of Bile Acids in Functional GI Disorders. Neurogastroenterology & Motility, 26(8): 1057–1069.
- [12] Yu H, Zhao T, Liu S, et al., 2019, MRGPRX4 Is a Bile Acid Receptor for Human Cholestatic Itch. eLife, 8: e48431.
- [13] Han L, Ma C, Liu Q, et al., 2013, A Subpopulation of Nociceptors Specifically Linked to Itch. Nature Neuroscience, 16(2): 174–182
- [14] Yu H, Wangensteen K, Deng T, Li Y, Luo W, 2021, MRGPRX4 in Cholestatic Pruritus. Seminars in Liver Disease, 41(3): 358–367.
- [15] Meixiong J, Vasavda C, Snyder S, et al., 2019, MRGPRX4 Is a G Protein-Coupled Receptor Activated by Bile Acids That May Contribute to Cholestatic Pruritus. Proceedings of the National Academy of Sciences, 116(21): 10525–10530.
- [16] Dawson P, Haywood J, Craddock A, et al., 2003, Targeted Deletion of the Ileal Bile Acid Transporter Eliminates Enterohepatic Cycling of Bile Acids in Mice. Journal of Biological Chemistry, 278(36): 33920–33927.
- [17] Dilger K, Hohenester S, Winkler-Budenhofer U, et al., 2012, Effect of Ursodeoxycholic Acid on Bile Acid Profiles and Intestinal Detoxification Machinery in Primary Biliary Cirrhosis and Health. Journal of Hepatology, 57(1): 133–140.
- [18] Trauner M, Boyer J, 2003, Bile Salt Transporters: Molecular Characterization, Function, and Regulation. Physiological Reviews, 83(2): 633–671..
- [19] Banerjee A, Swaan P, 2006, Membrane Topology of Human ASBT (SLC10A2) Determined by Dual Label Epitope Insertion Scanning Mutagenesis: New Evidence for Seven Transmembrane Domains. Biochemistry, 45(3): 943–953.
- [20] Zhang E, Phelps M, Banerjee A, et al., 2004, Topology Scanning and Putative Three-Dimensional Structure of the Extracellular Binding Domains of the Apical Sodium-Dependent Bile Acid Transporter (SLC10A2). Biochemistry, 43(36): 11380–11392.
- [21] Hussainzada N, Claro T, Swaan P, 2009, The Cytosolic Half of Helix III Forms the Substrate Exit Route During Permeation Events of the Sodium/Bile Acid Cotransporter ASBT. Biochemistry, 48(36): 8528–8539.
- [22] Lanzini A, Tavonatti M, Panarotto B, et al., 2003, Intestinal Absorption of the Bile Acid Analogue 75Se-Homocholic Acid-Taurine Is Increased in Primary Biliary Cirrhosis, and Reverts to Normal During Ursodeoxycholic Acid Administration. Gut, 52(9): 1371–1375.
- [23] Cai S, Boyer J, 2021, The Role of Bile Acids in Cholestatic Liver Injury. Annals of Translational Medicine, 9(8): 737–737.
- [24] Chen W, Wei Y, Xiong A, et al., 2019, Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clinical Reviews in Allergy & Immunology, 58(1): 25–38.

- [25] Feng S, Xie X, Li J, et al., 2024, Bile Acids Induce Liver Fibrosis Through the NLRP3 Inflammasome Pathway and the Mechanism of FXR Inhibition of NLRP3 Activation. Hepatology International, 18(3): 1040–1052.
- [26] Feng S, Xie X, Li J, et al., 2025, Correction: Bile Acids Induce Liver Fibrosis Through the NLRP3 Inflammasome Pathway and the Mechanism of FXR Inhibition of NLRP3 Activation. Hepatology International.
- [27] PubChem, 2025, Linerixibat. PubChem Database, visited on April 14, 2025, https://pubchem.ncbi.nlm.nih.gov/compound/Linerixibat.
- [28] Wu Y, Aquino C, Cowan D, et al., 2013, Discovery of a Highly Potent, Nonabsorbable Apical Sodium-Dependent Bile Acid Transporter Inhibitor (GSK2330672) for Treatment of Type 2 Diabetes. Journal of Medicinal Chemistry, 56(12): 5094–5114.
- [29] Hegade V, Bolier R, Elferink R, et al., 2016, A Systematic Approach to the Management of Cholestatic Pruritus in Primary Biliary Cirrhosis. Frontline Gastroenterology, 7(3): 158–166.
- [30] Hegade V, Jones D, Hirschfield G, 2017, Apical Sodium-Dependent Transporter Inhibitors in Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. Digestive Diseases, 35(3): 267–274.
- [31] Peppel I, Verkade H, Jonker J, 2020, Metabolic Consequences of Ileal Interruption of the Enterohepatic Circulation of Bile Acids. American Journal of Physiology Gastrointestinal and Liver Physiology, 319(5): G619–G625.
- [32] Zamek-Gliszczynski M, Kenworthy D, Bershas D, et al., 2021, Pharmacokinetics and ADME Characterization of Intravenous and Oral [14C]-Linerixibat in Healthy Male Volunteers. Drug Metabolism and Disposition, 49(12): 1109–1117.
- [33] Hegade V, Kendrick S, Dobbins R, et al., 2017, Effect of Ileal Bile Acid Transporter Inhibitor GSK2330672 on Pruritus in Primary Biliary Cholangitis: A Double-Blind, Randomised, Placebo-Controlled, Crossover, Phase 2a Study. Lancet, 389(10074): 1114–1123.
- [34] Ino H, Endo A, Wakamatsu A, et al., 2018, Safety, Tolerability, Pharmacokinetic and Pharmacodynamic Evaluations Following Single Oral Doses of GSK2330672 in Healthy Japanese Volunteers. Clinical Pharmacology in Drug Development, 8(1): 70–77.
- [35] Tanaka A, Atsukawa M, Tsuji K, et al., 2023, Japanese Subgroup Analysis of GLIMMER: A Global Phase IIb Study of Linerixibat for the Treatment of Cholestatic Pruritus in Patients with Primary Biliary Cholangitis. Hepatology Research, 53(7): 629–640.
- [36] GlaxoSmithKline, 2024, Linerixibat Shows Positive Phase III Results in Cholestatic Pruritus (Relentless Itch) in Primary Biliary Cholangitis (PBC), GSK Press Release, visited on April 14, 2025, https://www.gsk.com/en-gb/media/press-releases/linerixibat-shows-positive-phase-iii-results-in-cholestatic-pruritus/.
- [37] GlaxoSmithKline, 2025, Global Linerixibat Itch Study of Efficacy and Safety in Primary Biliary Cholangitis (PBC) (GLISTEN), visited on April 14, 2025, https://clinicaltrials.gov/study/NCT04950127.
- [38] Ticho A, Malhotra P, Dudeja P, et al., 2019, Bile Acid Receptors and Gastrointestinal Functions. Liver Research, 3(1): 31–39.
- [39] Davie R, Hosie K, Grobler S, et al., 1994, Ileal Bile Acid Malabsorption in Colonic Crohn's Disease. British Journal of Surgery, 81(2): 289–290.
- [40] Vítek L, 2015, Bile Acid Malabsorption in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 21(2): 476–483.
- [41] Levy C, Kendrick S, Bowlus C, et al., 2023, GLIMMER: A Randomized Phase 2b Dose-Ranging Trial of Linerixibat in Primary Biliary Cholangitis Patients With Pruritus. Clinical Gastroenterology and Hepatology, 21(7): 1902–1912.
- [42] Yi S, Kim I, Hager R, et al., 2024, FDA Approval Summary: Odevixibat (Bylvay) for the Treatment of Pruritus With Progressive Familial Intrahepatic Cholestasis. Gastro Hep Advances, 2024: 100596–100596.
- [43] Graffner H, Gillberg P, Rikner L, et al., 2015, The Ileal Bile Acid Transporter Inhibitor A4250 Decreases Serum Bile Acids

- by Interrupting the Enterohepatic Circulation. Alimentary Pharmacology & Therapeutics, 43(2): 303-310.
- [44] Shneider B, Spino C, Kamath B, et al., 2022, Impact of Long-Term Administration of Maralixibat on Children With Cholestasis Secondary to Alagille Syndrome. Hepatology Communications, 6(8): 1922–1933.
- [45] Loomes K, Squires R, Kelly D, et al., 2022, Maralixibat for the Treatment of PFIC: Long-Term, IBAT Inhibition in an Open-Label, Phase 2 Study. Hepatology Communications, 6(9): 2379–2390.
- [46] Mayo M, Pockros P, Jones D, et al., 2019, A Randomized, Controlled, Phase 2 Study of Maralixibat in the Treatment of Itching Associated With Primary Biliary Cholangitis. Hepatology Communications, 3(3): 365–381.
- [47] Baghdasaryan A, Claudel T, Gumhold J, et al., 2011, Dual Farnesoid X Receptor/TGR5 Agonist INT-767 Reduces Liver Injury in the Mdr2-/- (Abcb4-/-) Mouse Cholangiopathy Model by Promoting Biliary HCO₃- Output. Hepatology, 54(4): 1303–1312.
- [48] Inagaki T, Choi M, Moschetta A, et al., 2005, Fibroblast Growth Factor 15 Functions as an Enterohepatic Signal to Regulate Bile Acid Homeostasis. Cell Metabolism, 2(4): 217–225.
- [49] Kim I, Ahn S, Inagaki T, et al., 2007, Differential Regulation of Bile Acid Homeostasis by the Farnesoid X Receptor in Liver and Intestine. Journal of Lipid Research, 48(12): 2664–2672.
- [50] Casey J, Sly W, Shah G, et al., 2009, Bicarbonate Homeostasis in Excitable Tissues: Role of AE3 Cl−/HCO₃− Exchanger and Carbonic Anhydrase XIV Interaction. American Journal of Physiology-Cell Physiology, 297(5): 1091–1102.
- [51] Hu Y, Liu X, Zhan W, 2018, Farnesoid X Receptor Agonist INT-767 Attenuates Liver Steatosis and Inflammation in Rat Model of Nonalcoholic Steatohepatitis. Drug Design, Development and Therapy, 12: 2213–2221.
- [52] Kawamata Y, Fujii R, Hosoya M, et al., 2003, A G Protein-Coupled Receptor Responsive to Bile Acids. Journal of Biological Chemistry, 278(11): 9435–9440.
- [53] Keitel V, Donner M, Winandy S, et al., 2008, Expression and Function of the Bile Acid Receptor TGR5 in Kupffer Cells. Biochemical and Biophysical Research Communications, 372(1): 78–84.
- [54] Bunnett N, 2014, Neuro-Humoral Signalling by Bile Acids and the TGR5 Receptor in the Gastrointestinal Tract. The Journal of Physiology, 592(14): 2943–2950.
- [55] Pols T, Nomura M, Harach T, et al., 2011, TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cell Metabolism, 14(6): 747–757.
- [56] Braadland PR, Schneider KM, Bergquist A, Molinaro A, Lövgren-Sandblom A, Henricsson M, Karlsen TH, Vesterhus M, Trautwein C, Hov JR, Marschall HU, 2022, Suppression of Bile Acid Synthesis as a Tipping Point in the Disease Course of Primary Sclerosing Cholangitis. JHEP Reports, 4(11): 100561.
- [57] Escient Pharmaceuticals Inc, 2023, Evaluate the Safety, Tolerability, and PK of EP547 in Healthy Subjects and Subjects With Cholestatic or Uremic Pruritus, visited on April 14, 2025, https://clinicaltrials.gov/study/NCT04510090.
- [58] Escient Pharmaceuticals, 2022, MRGPRX4-Targeted Therapeutics for Neurosensory-Inflammatory Disorders, visited on April 14, 2025, https://www.escientpharma.com/programs/mrgprx4/.

Publisher's note

Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.