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Abstract: Cholestatic pruritus significantly impairs quality of life in Primary Biliary Cholangitis (PBS) and is often refractory 
to ursodeoxycholic acid. This review explores Linerixibat, a gut-restricted ileal bile acid transporter (IBAT) inhibitor, as 
a targeted therapy for PBC-associated pruritus. By selectively blocking IBAT in the terminal ileum, Linerixibat reduces 
systemic bile acid (BA) accumulation—a key driver of itch via MAS-related G protein-coupled receptor X4 (MRGPRX4) 
activation on sensory neurons. Clinical trials demonstrate Linerixibat’s efficacy in lowering serum BAs and alleviating 
pruritus, with a safety profile characterized primarily by manageable, mechanism-driven diarrhea. Unlike IBAT inhibitors 
developed for paediatric cholestatic disorders (e.g., odevixibat for PFIC), Linerixibat is optimized for adult PBC. Future 
therapeutic strategies may involve combining Linerixibat with agents targeting BA homeostasis (e.g., dual FXR/TRG5 
agonists like INT-767) or pruritus signaling (e.g., MRGPRX4 antagonists). Ongoing Phase III trials will further define its 
long-term role in PBC management. 
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1. Introduction 
PBC is an autoimmune liver disease characterised by progressive intrahepatic bile duct destruction, leading to cholestasis, 
fibrosis, and eventual cirrhosis [1]. Advanced stages often necessitate liver transplantation, a resource-intensive intervention 
demanding lifelong immunosuppression due to rejection risk [2]. Among PBC’s debilitating symptoms, cholestatic pruritus 
severely impairs patient’s quality of life, causing sleep deprivation, fatigue, and in extreme cases, suicidal ideation [3–5]. First-
line therapy with ursodeoxycholic acid (UDCA) slows disease progression but often fails to relieve pruritus [6,7]. This treatment 
gap reflects the complex pathophysiology of PBC-associated pruritus, where bile acid (BA) accumulation activates specific 
pruritogenic pathways [8–10]. These insights have led to drugs such as Linerixibat, a selective ileal bile acid transporter 
(IBAT) inhibitor that reduces systemic BA overload.

2. BA accumulation and pruritus in PBC: The role of IBAT
Cholestatic pruritus in PBC results from systemic BA accumulation due to impaired bile flow, leading to elevated 
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cytotoxic BAs such as deoxycholic acid (DCA), taurochenodeoxycholic acid (TCDCA) and chenodeoxycholic acid 
(CDCA) [11,12]. These BAs bind and activate the Mas-related G protein-coupled receptor X4 (MRGPRX4) on dorsal 
root ganglion (DRG) neurons [12]. Upon activation, MRGPRX4 couples to Gq proteins and stimulate phospholipase C 
(PLC), hydrolysing phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate (IP3). IP3 induces intracellular 
calcium release, depolarising DRG neurons and triggering action potentials that transmit itch signals to the central nervous 
system [12–14] (Figure 1). This mechanism is supported by findings that intradermal BA injection induces scratching in 
MRGPRX4-humanised mice [15]. In humans, BAs or MRGPRX4 agonists elicit histamine-independent pruritus [12]. Moreover, 
plasma BA levels positively correlate with itch severity in PBC patients, and pathological BA mixtures selectively activate 
MRGPRX4, implicating MRGPRX4 in cholestatic itch [12]. 

Central to this process is IBAT, which mediates sodium-dependent reabsorption of conjugated BAs in the terminal 
ileum, returning them to the liver via the portal vein to support digestion and lipid absorption, maintaining enterohepatic 
circulation [16,17]. IBAT activity relies on a sodium gradient generated by basolateral Na⁺/K⁺-ATPase to co-transport Na⁺ and 
BA from the intestinal lumen into enterocytes against their concentration gradient [18]. 

Structurally, IBAT contains seven transmembrane helices with an extracellular N- terminus and intracellular 
C-terminus [19,20]. Transmembrane helix 3 (TM3) contains critical aspartate residues (D122, D124) for Na+ and BA 
transport [21]. In PBC, IBAT is upregulated to compensate for low intestinal BA, as the body attempts to preserve 
enterohepatic circulation, which paradoxically increases systemic BA, sustaining MRGPRX4 activation and pruritus [12,22]. 

Beyond pruritus, excess BAs contribute to hepatic inflammation, fibrosis, and PBC progression [12,23–26], reinforcing 
BA reduction as a therapeutic strategy. 

Figure 1. Bile acids such as deoxycholic acid (DCA) and taurochenodeoxycholic acid (TCDCA) activate the Mas-related G protein-coupled 
receptor X4 (MRGPRX4) on dorsal root ganglion (DRG) neurons. Upon ligand binding, MRGPRX4 couples with Gq proteins to activate 
phospholipase C (PLC), which hydrolyses PIP₂ into IP₃. IP₃ stimulates intracellular Ca²⁺ release, leading to neuronal depolarisation and 
transmission of itch signals to the spinal cord and brain. This cascade ultimately results in the itch sensation and the scratching response.
Created in Biorender.com. Information from Yue et al. (2019 & 2021) [12,14]. 

3. Structure and mechanism of Linerixibat
Linerixibat (GSK2330672) is a potent, non-absorbable small molecule that selectively inhibits IBAT. Its structure 
features two terminal carboxylic acid groups and a zwitterionic structure (combining an ionizable amine linker with 
negatively charged carboxylates), which mimics the physicochemical properties of conjugated BAs [27,28]. These 
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polar, ionised groups confer high aqueous solubility while preventing passive diffusion across intestinal membranes, 
restricting Linerixibat to the intestinal lumen and minimising systemic absorption [28]. Linerixibat achieves high-affinity 
binding to sodium-coordinating aspartates in IBAT’s TM3 [20,21]. By blocking BA reabsorption at the ileal brush border, 
Linerixibat diverts BAs to the colon for faecal excretion, disrupting enterohepatic circulation and reducing the BAs 
available for pruritogenic activation [29,30] (Figure 2). 

Figure 2. Linerixibat competitively inhibits IBAT on enterocytes in the terminal ileum. The black arrows represent the normal enterohepatic 
circulation, where bile acids (BA) are reabsorbed in the ileum and returned to the liver. The pink arrows represent the altered pathway following 
Linerixibat administration, where inhibition of IBAT blocks BA reuptake, leading to increased faecal BA excretion and reduced systemic BA 
levels. Created in Bioreder.com. Information from Hegade et al. (2016) and Hegade et al. (2017) [29,30]; Linerixibat chemical structure taken 
from PubChem (2025) [27].

4. Selectivity and therapeutic precision of Linerixibat
Linerixibat’s selectivity arises from structural differences between IBAT and related transporters. Although the hepatic 
sodium-taurocholate co-transporting polypeptide (NTCP) shares moderate homology with IBAT, it lacks the TM3 aspartates 
required for sodium-coupled transport, making it insensitive to Linerixibat [21]. Moreover, Linerixibat doesn’t interfere with 
basolateral organic solute transporter OSTα/β, which exports BAs from enterocytes into the circulation. These selective 
interactions reduce intestinal BA reabsorption while preserving systemic BA homeostasis, providing therapeutic effects with 
minimal off-target activities [28,31,32].
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5. Clinical application of Linerixibat and other IBAT inhibitors
Linerixibat’s gut-restricted action, non-absorbable design ensures localised action in the terminal ileum, minimising 
systemic effects while effectively reducing BA reabsorption via selective IBAT blockade [28,32–34]. Clinical trials consistently 
support its efficacy, with Phase II data showing significant serum BA and pruritus reduction without significant systemic 
toxicity [33,34,35]. The ongoing Phase III GLISTEN trial (NCT04950127) aims to optimise long-term dosing. So far, results 
demonstrate pruritus relief with consistent safety profiles [36,37]. 

The main side effect is colonic BA-induced diarrhoea. Unabsorbed BAs activate the Takeda G-protein-coupled 
receptor 5 (TGR5) on enterochromaffin cells and enteric neurons, promoting serotonin and calcitonin gene-related peptide 
release, accelerating colonic motility and reducing water reabsorption [38]. Additionally, high luminal BA concentration 
disrupts colonic epithelial tight junctions, enabling BA to reach the basolateral membrane and increasing fluid secretion [38]. 
These effects overwhelm colonic reabsorptive capacity, causing diarrhoea.

Elevated serum 7α-hydroxy-4-cholesten-3-one (C4), a biomarker of BA malabsorption, further confirms Linerixibat’s 
action, and is a hallmark of BA malabsorption syndrome, where impaired BA uptake similarly causes diarrhoea [11,39,40]. 
This indicates diarrhoea is a mechanism-driven, non-toxic adverse effect. Diarrhoea is generally mild and self-limiting, 
consistent with Linerixibat’s intestinal specificity [29,33,41].

Among IBAT inhibitors, therapeutic applications vary by age and pathology. Odevixibat is formulated for paediatric 
use in progressive familial intrahepatic cholestasis (PFIC), showing serum BA reduction and pruritus relief in infants 
as young as 3 months [42,43]. Maralixibat reduces serum BAs and pruritus in children with Alagille syndrome [44,45], but 
offers limited benefit in adult PBC [46]. Linerixibat is optimised for adult PBC, addressing ductal destruction rather than 
developmental defects, highlighting the importance of disease-specific therapy design. 

6. Further directions: Combination therapies and novel targets
Linerixibat’s potential may be enhanced by combining it with agents targeting hepatic inflammation and fibrosis. 
Preclinical studies demonstrate the efficacy of INT-767, a dual Farnesoid X receptor (FXR)/TGR5 agonist, in reducing BA 
toxicity while modulating inflammatory and fibrotic pathways [47] (Figure 3). 

FXR activation suppresses hepatic BA synthesis via ileal small heterodimer partner (SHP) and intestinal fibroblast growth 
factor 15 (Fgf15) induction, both of which inhibit cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in BA 
production, reducing BA production [48,49]. FXR also promotes bicarbonate-rich bile secretion through carbonic anhydrase 14 
(CA14) upregulation, neutralising residual BA and protecting hepatocytes [50]. BA excretion is enhanced by bile salt export pump 
(BSEP) upregulation triggered by INT-767, further reducing hepatocellular BA accumulation [47]. Moreover, FXR-mediated 
reduction in IL-1β levels reduces autoimmune cholangiocyte damage [47,51].

Simultaneously, TGR5 activates cAMP signalling to supress NF-κB activation and downregulate proinflammatory 
cytokines (TNF-α, IL-6, MCP-1) in macrophages and Kupffer cells, promoting an anti-inflammatory hepatic 
environment [52–55]. INT-767 also inhibits hepatic stellate cell activation and collagen deposition, attenuating fibrosis and 
slowing cirrhosis [47]. 

Dual FXR/TGR5 agonism provides synergistic benefits not achievable with selective activation of either 
receptor alone [56]. However, human trials are needed to assess pharmacodynamic interactions, safety, and optimal 
dosing. Meanwhile, MRGPRX4 antagonist such as EP547, currently under Phase II trials (NCT04510090), offering a 
complementary strategy for pruritus relief in PBC [57,58].
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Figure 3. INT-767, a dual agonist of FXR and TGR5, reduces bile acid (BA)-induced toxicity and liver inflammation. FXR activation in 
hepatocytes induces small heterodimer partner (SHP) and intestinal fibroblast growth factor 15 (Fgf15), both of which suppress CYP7A1, the 
rate-limiting enzyme in BA synthesis. FXR also promotes bicarbonate-rich bile production via carbonic anhydrase 14 (CA14), and enhances 
bile acid excretion by upregulating the bile salt export pump (BSEP). These changes decrease intracellular bile acid accumulation and reduce 
toxicity. Simultaneously, TGR5 activation on macrophages and Kupffer cells increases cAMP via adenylyl cyclase (AC), activating PKA, 
which inhibits NF-κB signaling. This leads to downregulation of pro-inflammatory cytokines including IL-1β, TNF-α, IL-6, and MCP-1, 
creating an anti-inflammatory hepatic environment.Created in Biorender.com. Information from Baghdasaryan et al. (2011) and Pols et al. 
(2011) [47,55].

7. Conclusion
Linerixibat is a promising targeted therapy for cholestatic pruritus in PBC, leveraging selective IBAT inhibition to reduce 
systemic BA levels while avoiding systemic toxicity. Its gut-restricted mechanism ensures a favourable safety profile, with 
mild, mechanism-driven diarrhoea that could be mitigated through dose titration or adjunctive therapies targeting colonic 
BA effects. Compared to other IBAT inhibitors, Linerixibat is uniquely optimised for adult PBC. Further strategies may 
combine Linerixibat with agents such as INT767 or MRGPRX4 antagonists to address pruritus, inflammation, and fibrosis 
synergistically. Further research into the molecular mechanisms cholestatic pruritus is essential to fully understood and 
more effectively treat this complex and debilitating symptom. 
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