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A b s t r a c t

To explore the deep fusion mode of AI intelligent diagnostic system in medical 
image processing and its role in improving diagnostic efficiency. Method: A 
retrospective analysis was conducted on the data of 300 patients who underwent 
CT, MRI, or X-ray examinations in our hospital from January 2023 to January 
2024. Among them, 150 patients were diagnosed using traditional medical 
image analysis methods (traditional group), and 150 patients were diagnosed 
using an analysis process integrated with an AI intelligent diagnostic system 
(AI group). Compare the diagnostic accuracy, diagnostic time, lesion detection 
rate, and missed diagnosis rate between two groups. Result: The diagnostic 
accuracy of the AI group was 94.67%, significantly higher than the traditional 
group’s 86.67% (P<0.05); The average diagnosis time for the AI group was 
12.3 minutes, which was significantly shorter than the traditional group’s 21.5 
minutes (P<0.05); The lesion detection rate in the AI group reached 92.37%, 
which was higher than the 83.59% in the traditional group (P<0.05); The missed 
diagnosis rate in the AI group was 3.34%, which was lower than the traditional 
group’s 10.71% (P<0.05). Conclusion: The deep integration of AI intelligent 
diagnostic systems and medical image processing can significantly improve 
diagnostic efficiency, optimize clinical workflow, provide strong support for 
precision medicine, and have broad application prospects.
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1. Introduction
Medical  image processing has  emerged as  an 
indispensable component in contemporary medical 
diagnostics. Medical imaging modalities such as CT 
(Computed Tomography), MRI (Magnetic Resonance 
Imaging), and X-ray films enable the clear visualization 
of internal tissues, organs, and pathological changes, 

facilitating direct clinical assessment by physicians 

[1]. However, this field is confronted with two primary 
challenges: First, the advancement of medical equipment 
has led to an exponential growth in medical data, 
posing a significant challenge in extracting meaningful 
information from large datasets. Second, subtle lesions, 
early-stage pathologies, or those located in anatomically 
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complex regions (such as the skull base or spinal canal) 
often lack obvious morphological alterations, rendering 
them difficult to detect [2]. Therefore, the integration 
of computational algorithms for automated feature 
extraction holds the potential to substantially reduce the 
time and labor associated with manual analysis, while 
simultaneously mitigating uncertainties introduced by 
human subjectivity [3].

In recent years, artificial intelligence (AI), as an 
emerging discipline, has attracted increasing attention 
and achieved numerous advancements. It primarily 
focuses on the fundamental theories of biological nervous 
systems and intelligent behaviors, along with their 
engineering implementations, aiming to mimic human 
thought processes. Through mathematical descriptions 
of knowledge application programs and technologies, 
AI endows machines with the ability to perceive 
environments and accomplish predefined tasks [4]. The 
core philosophy of AI technology lies in emulating 
human brain thinking patterns: by studying the learning 
mechanisms of human brain neurons, it develops new 
artificial systems that can generate corresponding outputs 
based on input information, without requiring explicit 
instructions or rules written by programmers [5]. Currently, 
AI-based medical imaging technologies have been widely 
integrated into all aspects of medical image processing: 
including image segmentation and registration in the 
preprocessing stage, tumor volume measurement and 
lesion localization in the lesion detection stage, as well 
as diagnostic assistance in the final stage. Additionally, 
AI has been applied to disease classification diagnosis, 
drug design, surgical planning, rehabilitation training, 
and other domains. Numerous scholars are now dedicated 
to leveraging AI technologies to address the challenges 
inherent in traditional medical image diagnostics [6].

This study investigates the application paradigm of 
integrating AI intelligent diagnostic systems with medical 
images, aiming to validate their efficacy in enhancing 
diagnostic accuracy for medical imaging. By comparing 
traditional medical image analysis with AI-integrated 
approaches, this research conducts multi-faceted 
quantitative statistical analyses to evaluate whether the 
system can assist healthcare professionals in reducing 
diagnostic time, improving lesion detection rates, and 

minimizing misdiagnoses and missed diagnoses—all 
while maintaining diagnostic reliability. The findings 
seek to: (1) establish a theoretical foundation for the 
development of AI in medical imaging; (2) provide 
practical insights for healthcare professionals to optimize 
AI technology integration. 

2. General Materials and Methods
2.1. Study Cohort
This retrospective cohort study enrolled 300 patients 
who underwent CT, MRI, or X-ray examinations in the 
Department of Radiology of our institution between 
January 2023 and January 2024. All participants met pre-
specified inclusion and exclusion criteria, as follows: 
Inclusion criteria: (1) Aged 18–80 years, regardless of 
gender; (2) Clinically suspected or confirmed pulmonary 
diseases (e.g., pulmonary nodules), cerebral diseases 
(e.g., stroke), or hepatic diseases (e.g., liver cancer); (3) 
Complete CT/MRI/X-ray imaging data with diagnostic 
quality. Exclusion criteria: (1) Images with severe artifacts 
(motion or metallic artifacts); (2) Suboptimal image 
quality (CT slice thickness >5 mm or matrix <512×512); 
(3) Concomitant multi-system malignancies or end-stage 
diseases; (4) Incomplete clinical records. Participants 
were randomized into two groups using a random number 
table: Conventional group (n=150): Diagnoses were 
independently performed by two senior radiologists using 
standard methods.AI group (n=150): Diagnoses were 
assisted by an AI intelligent diagnostic system, with final 
confirmation by radiologists. Baseline characteristics 
were comparable between groups (P>0.05): Conventional 
group: Mean age 58.2±10.5 years; 82 males (54.7%) and 
68 females (45.3%); disease distribution: 65 pulmonary 
(43.3%), 45 cerebral (30.0%), 40 hepatic (26.7%). AI 
group: Mean age 57.8±11.2 years; 85 males (56.7%) and 
65 females (43.3%); disease distribution: 63 pulmonary 
(42.0%), 47 cerebral (31.3%), 40 hepatic (26.7%). This 
study was approved by the Institutional Ethics Committee 
and conducted in accordance with the ethical principles of 
the Declaration of Helsinki. All patients provided written 
informed consent for the use of their anonymized imaging 
data in scientific research.
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2.2. Methods
2.2.1. Imaging Protocols
Imaging protocols were systematically established based 
on disease types and clinical diagnostic requirements:

CT examinations (60%) were performed using a 
Siemens SOMATOM Force dual-source CT scanner 
with core parameters: slice thickness 1 mm, tube voltage 
120 kV, and reconstruction matrix 512×512. Clinical 
applications included:
Low-dose thin-slice scanning (radiation dose ≤1 mSv) for 
pulmonary nodule screening
Non-contrast CT combined with perfusion imaging (CBF/
CBV parameter analysis) for acute stroke assessment
Triphasic contrast-enhanced scanning (arterial, portal 
venous, and delayed phases) for liver cancer diagnosis
MRI examinations (35%) were conducted on a GE Signa 
Premier 3.0T superconducting MRI system, including 
standardized sequences: T1-weighted imaging (T1WI), 
T2-weighted imaging (T2WI), diffusion-weighted 
imaging (DWI), and susceptibility-weighted imaging 
(SWI). Protocol parameters: slice thickness 3 mm, 
field of view (FOV) 240 mm. Specific applications: 
SWI sequence (phase-magnitude fusion reconstruction) 
for cerebral microbleed detection. DWI sequence 
(b-value=1000 s/mm²) for early cerebral infarction 
diagnosis. Dynamic contrast-enhanced scanning 
(gadolinium-based contrast agent 0.1 mmol/kg) for 
hepatic focal lesion characterization. X-ray examinations 
(5%) were performed using a Philips Digital Diagnost 
system with tube voltage controlled at 70–90 kV and 
automatic exposure control (AEC) to ensure image 
consistency. Indications included: Emergency skeletal 
trauma assessment (fracture line identification and joint 
dislocation detection). Chest disease screening (e.g., 
pneumonia consolidation detection).

2.2.2. Diagnostic Workflows
(1) Conventional Diagnostic Workflow

Radiologists independently completed the 
full  diagnostic process:  Systematically 
reviewing raw images (including multi-planar 
reformations) to manually identify suspicious 
lesions; Extracting features by quantitatively 
measuring lesion diameter (mean of three-
dimensional dimensions), density (CT value/

HU), or signal intensity (T1/T2 values), and 
recording qualitative characteristics such as 
boundary morphology (clear/indistinct) and 
internal structure (cystic change/calcification); 
Performing differential diagnosis by integrating 
clinical data (medical history, laboratory tests, 
etc.); Generating narrative diagnostic reports. 
This workflow relied entirely on radiologists’ 
professional experience without any computer-
aided tools.

(2) AI-Assisted Diagnostic Workflow
A standardized human-machine collaborative 
protocol was implemented: AI Preprocessing: 
The system performed DICOM raw image 
preprocessing, including: Non-local means 
denoising (noise reduction >40%). Adaptive 
histogram equalization (contrast enhancement). 
Motion artifact correction (based on registration 
algorithms). Deep Learning Model Analysis: 
A cascaded deep learning framework was 
employed: First, the nnU-Net 3D segmentation 
model achieved automatic lesion segmentation 
(outputting 3D volume and spatial coordinates). 
Then, the ResNet-50 classification model 
performed benign-malignant discrimination 
(outputting malignancy probability and 
confidence score). The models were trained on 
an independently annotated dataset of 1,000 
images covering 10 common lesion types (e.g., 
lung adenocarcinoma, metastatic liver cancer, 
lacunar infarction), with an 8:2 training-testing 
split. Structured Report Generation: The system 
automatically generated a structured report draft 
containing: Lesion localization (lung lobe/brain 
region/liver segment), Maximum diameter (mm), 
Malignancy probability (0–100%), Imaging 
feature descriptions (e.g., “ground-glass nodule 
with lobulation sign”), Differential diagnosis 
list (sorted by probability), Physician Review 
& Revision: Senior radiologists reviewed AI-
generated drafts: Manually adjusting lesion 
segmentation contours via DICOM Viewer 
interface; Modifying malignancy probability 
thresholds (default: >70% as high-risk); Adding/
removing differential diagnoses; All revisions 
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required annotated justifications (e.g., “AI 
misidentified vascular cross-section as nodule”). 
Model Iterative Optimization: The system 
automatically collected physician revision data 
(≥50 cases monthly) to update model weights via 
incremental learning, prioritizing optimization 
for high-error categories (e.g., micro-nodules <5 
mm).

2.3. Evaluation Metrics
(1) Diagnostic Accuracy: Using pathological biopsy 

results (82% of cases) or clinical follow-up data 
(imaging re-examination + laboratory tests) ≥6 
months as the gold standard. Positivity criteria: 
malignant tumors confirmed by pathology; 
cerebral infarction confirmed by follow-up MRI 
lesion evolution.

(2) Diagnostic Turnaround Time: Total duration (in 
minutes) from PACS system receipt of complete 
imaging data to electronic report issuance, 
including physician review time, was accurately 
recorded.

(3) Lesion Detection Rate: Calculated as (number 
of true-positive lesions / total lesions confirmed 
by gold standard) × 100%. Micro-lesions were 
defined as: pulmonary nodules ≤5 mm, hepatic 

lesions ≤10 mm, cerebral microbleeds ≤3 mm.
(4) Missed Diagnosis Rate: Calculated as (number 

of missed lesions / total lesions) × 100%, where 
missed lesions were those unmentioned in initial 
reports but confirmed by the gold standard.

2.4. Statistical Methods
Statistical analyses were performed using SPSS 26.0. 
For measurement data (e.g., diagnostic turnaround time), 
normality was verified via the Shapiro-Wilk test, and 
results were presented as mean ± standard deviation 
(x±s). Independent samples t-tests were used for between-
group mean comparisons (significance level α=0.05). 
Categorical data (e.g., accuracy rates, detection rates) 
were expressed as frequencies and percentages, with 
between-group differences analyzed by chi-square 
test; Fisher’s exact test was applied when theoretical 
frequencies were <5. Statistical significance was set at 
P<0.05 (two-tailed test). 

3. Results
3.1. Comparison of Diagnostic Accuracy 
Between Groups
The Alibaba group achieved an overall diagnostic 
accuracy of 94.67%, significantly higher than 86.67% 

Table 1. Comparison of Diagnostic Accuracy Between Groups (n=150)

Group Overall Accuracy(%) Pulmonary Accuracy(%) Cerebral Accuracy(%) Hepatic Accuracy(%)

Hepatic Accuracy (%) 86.67 84.62 86.67 90.00

AI Group 94.67 93.65 95.74 95.00

χ² 5.143 3.892 4.102 1.667

P 0.023* 0.048* 0.043* 0.197

*Denotes statistical significance (P < 0.05)

Table 2. Comparison of Diagnostic Time Efficiency Between Groups

Group Overall Diagnostic Time(min) Image Analysis Time(min) Report Generation Time(min)

Conventional Group 21.50±3.25 15.80±2.70 5.70±1.10

AI Group 12.30±2.15 4.20±0.85 8.10±1.45

t 28.634 45.217 12.883

P <0.001 <0.001 <0.001
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in the conventional group. The most pronounced 
improvement was observed in pulmonary disease 
diagnosis, with notable enhancement in cerebral disease 
diagnosis (both P<0.05). No statistically significant 
difference was found in hepatic disease diagnosis between 
groups (P>0.05), as shown in Table 1.

3.2. Comparison of Diagnostic Time Efficiency 
Between Groups
The AI group demonstrated a 43% reduction in overall 
diagnostic turnaround time and a 73% decrease in image 
analysis duration, both significantly shorter than the 
conventional group (P<0.05). However, the report generation 
phase (physician review) showed a 42% increase in 
processing time (P<0.05), as detailed in Table 2.

3.3. Comparison of Lesion Detection Rates 
Between Groups
The AI group showed higher overall lesion detection 
rate, as well as detection rates for pulmonary nodules, 
liver cancer lesions and cerebral microbleeds than the 
conventional group (P < 0.05), as shown in Table 3.

3.4. Comparison of Missed Diagnosis and 
Misdiagnosis Rates Between Groups
The AI group exhibited significantly lower missed 
diagnosis and misdiagnosis rates than the conventional 
group (P<0.05), as shown in Table 4.

4. Discussion
Medical images serve as indispensable information 
carriers in clinical diagnostics, encapsulating rich medical 
data. However, traditional medical image processing 
methods struggle to meet practical demands when 
confronted with the sheer volume and complexity of 
pathological changes [7]. The advancement of artificial 
intelligence (AI) has ushered in new opportunities for 
medical image analysis, with AI-powered diagnostic 
systems poised to accelerate technological progress 
and expand into adjacent domains [8]. This underscores 
the significance of researching AI applications in 
medical imaging, building on existing literature that 
has demonstrated the efficacy of AI-computer vision 
frameworks in diagnosing cranial and pulmonary 
disorders [9-10].

Our findings show that the AI group achieved 
significantly higher diagnostic accuracy than the 
conventional group, with the most pronounced 
improvements in pulmonary and cerebral disease 
diagnostics (P<0.05),  alongside lower missed/
misdiagnosis rates. This confirms that AI systems can 
effectively enhance diagnostic accuracy for common 
diseases. Leveraging deep neural networks, AI systems 
trained on massive medical image datasets excel 
at extracting subtle lesion features—for instance, 
automatically localizing pulmonary nodules and 
evaluating morphological, contour, density, and contextual 

Table 3. Comparison of Lesion Detection Rates between Two Groups (%)

Index Conventional Group(n=128*) AIGroup(n=131*) χ² P

Overall detection rate 83.59 92.37 5.291 0.021

Detection rate of micro-lesions

Pulmonary nodules (≤5mm) 68.75 89.47 7.102 0.008

 Liver cancer lesions (≤10mm) 71.43 90.91 4.026 0.045

Cerebral microbleeds (≤3mm) 65.22 86.96 5.014 0.025

Table 4. Comparison of Missed Diagnosis and Misdiagnosis Rates Between Groups

Group Conventional Group(%) AI Group(%) χ² P

Missed Diagnosis Rate 10.71 3.34 6.127 0.013

Misdiagnosis Rate 8.33 2.00 5.556 0.018
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attributes to assist in benign-malignant differentiation, 
thereby improving lung cancer detection [11].

The AI group reduced overall diagnostic turnaround 
time by 43% and image analysis duration by 73%, 
demonstrating substantial workflow acceleration. 
Clinically, traditional image interpretation demands 
intensive human resources for lesion identification [12], 
whereas AI’s computational power enables rapid image 
processing, allowing radiologists to focus on treatment 
planning and critical decision-making. This is particularly 
critical for emergency care—e.g., acute ischemic stroke, 
where timely thrombolysis/endovascular therapy can 
mitigate disability [13]. Shorter diagnostic cycles also 
optimize resource allocation, streamline patient flows, 
and enhance healthcare service quality.

Notwithstanding these advantages, real-world 
adoption faces hurdles: Technical limitations: AI accuracy 
is compromised by poor image quality and rare diseases 
due to insufficient training data. Human-AI dynamics: 

Over-reliance on AI may erode clinical acumen, 
necessitating a balance between trusting AI suggestions 
and applying professional judgment. Continuous 
medical education on AI principles is essential. Model 
optimization: Develop multi-center training algorithms 
to improve performance on low-quality images and rare 
pathologies. Clinical translation: Formulate strategies 
for AI deployment across healthcare settings, establish 
tele-diagnosis platforms, and foster interdisciplinary 
collaboration to uplift grassroots diagnostic capabilities. 
Regulatory framework: Implement robust monitoring 
systems to ensure AI safety and efficacy.

AI-powered diagnostic systems exhibit substantial 
clinical value and promising prospects in medical 
imaging. Through algorithmic refinement, cross-
disciplinary collaboration, and balanced human-AI 
integration, these technologies will likely revolutionize 
diagnostic efficiency and drive innovation in medical 
radiology.
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