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A b s t r a c t :  

Billions of years of evolution in nature have nurtured abundant natural product 
resources, providing a vast molecular treasure trove for drug discovery and 
development. Evolution-oriented bioinformatics methods are playing an 
increasingly important role in the study of microbial natural products. The rapid 
growth of microbial genomic data presents new opportunities for big data analysis 
and evolutionary analysis of biosynthetic gene clusters. This not only allows us to 
have a clearer understanding of the panoramic view of natural products but also 
reveals the evolutionary patterns of natural products, utilizes evolutionary analysis 
methods and big data resources to discover novel drug lead natural products, 
understands biosynthetic enzymes, and even designs and modifies biosynthetic 
systems to create non-natural molecules. This article reviews recent advances in 
the application of evolution and big data-oriented bioinformatics to natural product 
research. It emphasizes the application of evolution and big data in the functional 
prediction of biosynthetic enzymes, evolutionary mechanisms, gene mining, and 
biosynthetic modification. Finally, it analyzes the current challenges and provides 
a view on future development trends.
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1. Introduction
Evolution is the process that promotes the emergence, 
development, and diversification of life [1]. Essentially, the 
evolution of life is the evolution of genetic information. 
Enzymes involved in the biosynthesis of natural products 

are encoded by genetic information, therefore, they are 
also subject to the forces of evolution [1–3]. To adapt to 
natural environments, plants and microorganisms have 
created many natural products. Over the past century, 
natural products have played a significant role as lead 
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molecules in healthcare and agricultural production, 
including penicillin, erythromycin, and vancomycin, 
which have been used as drugs to benefit humanity. 
Bioinformatic predictive analysis indicates that only 3% 
of bacterial-derived natural products have been discovered 
so far, and even highly studied groups like Streptomyces 
still contain many unknown natural products [4]. 

The development of gene sequencing technology 
has led to rapid growth in genomic data (Figure 1). The 
integration of large-scale genomics, metabolomics, and 
systematic data from functional studies, collectively 
known as “big data,” with bioinformatics, has brought a 
“technological revolution” to natural product research. 
Traditional natural product research heavily relied on 
compound isolation and purification, and natural products 
can only be understood through the accumulation 
of isolated monomeric compounds. Nowadays, it is 
transitioning to the stage of visualizing the panorama of 
natural products. Modern natural product research based 
on big data and bioinformatics has provided us with a 
macro-level understanding of the molecular diversity, 
abundance, and distribution of natural products. This 
allows us to appreciate the vast untapped potential 
of microbial natural product libraries and guides the 
discovery of new molecules with clinical or commercial 
value, enhancing the efficiency of natural product 
discovery [1,2,5–8]. Due to the significantly lower number 
of sequenced fungal genomes compared to bacterial 
genomes (as of January 2023, the number of bacterial 

genomes in the NCBI database was 1,420,776, while the 
number of fungal genomes was 28,183, accounting for 
only 2% of bacterial genomes), big data analysis mainly 
focuses on bacteria. Therefore, this article primarily 
elaborates on bacterial natural product research but also 
includes some fungal research.

Understanding the biosynthetic mechanisms of natural 
products and the biochemical characteristics of related 
enzymes has facilitated the application of evolutionary 
analysis in predicting enzyme functions, thereby guiding 
the modification of enzymes and biosynthetic pathways [6,9]. 
Currently, research on natural products based on evolution 
focuses on the following aspects: 

(1) Discovering new natural products using 
evolutionary-guided methods (prediction of 
compound structures); 

(2) Predicting enzyme functions through evolutionary 
analysis; 

(3) Creating desired products by modifying 
biosynthetic systems. 

Therefore, this article will focus on the progress in 
the application of evolutionary-guided bioinformatics 
methods based on big data in natural product discovery 
and enzyme engineering research, and provide insights 
into the development of these tools and methods in the 
field of natural product research.

2. Research strategies for natural 
products based on evolution and big 
data
Gene mining is the prediction and isolation of active 
natural products based on genetic information without 
prior knowledge of chemical structures [10–13]. Microbial 
genome mining methods have revitalized antibiotic 
research, but these methods rely on sequence similarity 
searches of previously identified biosynthetic enzymes. 
This empirical nature limits the chemical space 
explored. In recent years, natural product researchers 
have incorporated evolutionary principles into genomic 
analysis to search for new pathways [14,15]. Natural product 
research utilizing evolution and big data is based on 
predicting functional similarity through phylogenetic 
distance. When the target protein sequence is distant 
from and forms a different evolutionary branch from 

Hybrid PKS

Figure 1. Growing trends for the number of bacterial genomes in 
the NCBI database from 2002 to 2022 (in the last two decades).
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genomes in the NCBI database was 1,420,776, while the 
number of fungal genomes was 28,183, accounting for 
only 2% of bacterial genomes), big data analysis mainly 
focuses on bacteria. Therefore, this article primarily 
elaborates on bacterial natural product research but also 
includes some fungal research.

Understanding the biosynthetic mechanisms of natural 
products and the biochemical characteristics of related 
enzymes has facilitated the application of evolutionary 
analysis in predicting enzyme functions, thereby guiding 
the modification of enzymes and biosynthetic pathways [6,9]. 
Currently, research on natural products based on evolution 
focuses on the following aspects: 

(1) Discovering new natural products using 
evolutionary-guided methods (prediction of 
compound structures); 

(2) Predicting enzyme functions through evolutionary 
analysis; 

(3) Creating desired products by modifying 
biosynthetic systems. 

Therefore, this article will focus on the progress in 
the application of evolutionary-guided bioinformatics 
methods based on big data in natural product discovery 
and enzyme engineering research, and provide insights 
into the development of these tools and methods in the 
field of natural product research.

2. Research strategies for natural 
products based on evolution and big 
data
Gene mining is the prediction and isolation of active 
natural products based on genetic information without 
prior knowledge of chemical structures [10–13]. Microbial 
genome mining methods have revitalized antibiotic 
research, but these methods rely on sequence similarity 
searches of previously identified biosynthetic enzymes. 
This empirical nature limits the chemical space 
explored. In recent years, natural product researchers 
have incorporated evolutionary principles into genomic 
analysis to search for new pathways [14,15]. Natural product 
research utilizing evolution and big data is based on 
predicting functional similarity through phylogenetic 
distance. When the target protein sequence is distant 
from and forms a different evolutionary branch from 

Hybrid PKS

the encoding sequence of a known compound, it tends 
to produce a new product with a novel core structure. 
When the target sequence is adjacent to the encoding 
sequence of a known compound, it may produce a new 
product that is not significantly different from the known 
compound (Figure 2a) [10,15]. Additionally, visualization 
of distribution patterns and diversity can be achieved 
based on whether the target sequence clusters with known 
sequences, belongs to a new branch, or is a rare outlier, 
presenting a panoramic view (Figure 2b).

(a) Prediction of functional similarity based on phylogenetic distance [15].

(b) Schematic representation of the distribution patterns and diversity of 

target genes

Figure 2. An overall concept of the phylogenetic analysis.

There are several evolution-based bioinformatics 
tools available for natural product mining, such as ARTS 
(Antibiotic Resistant Target Seeker) [16,17], NaPDoS 
(Natural Product Domain Seeker)/NaPDoS2 [18,19], 
EvoMining [20], Big-SCAPE, and CORASON [21,22]. 
ARTS and EvoMining are designed for evolutionarily 
related genomes, focusing on the prediction and cluster 
analysis of conserved biosynthetic gene clusters (BGCs). 

ARTS targets resistance genes, automatically screens 
sequence data by linking housekeeping genes and known 
resistance genes to adjacent BGCs, mines antibiotics 
with novel modes of action, and compares similar BGCs 
and their putative resistance genes. EvoMining, based 
on gene duplication and substrate specificity expansion 
of enzymes, has developed a gene mining method that 
detects homologs of certain types of housekeeping genes 
and compares the average number and phylogenetic 
distance of enzyme families. It can intuitively showcase 
the origin and evolutionary direction of natural product 
biosynthetic enzymes. NaPDoS rapidly extracts and 
groups PCR products, genomic or metagenomic data, 
analyzes the position of target KS (ketosynthase) or C 
(condensation) domains on the evolutionary tree and 
infers the novelty and potential of secondary metabolites 
from bacterial genetic data. Big-SCAPE targets multiple 
genomes with unknown evolutionary information, using 
gene clusters from the MIBiG database [23] as references 
to analyze gene clusters predicted by antiSMASH [24]. 
It constructs a sequence similarity network, classifies 
these gene clusters into different gene cluster families, 
and then uses CORASON to interpret the evolutionary 
relationships among different gene clusters within each 
family. These bioinformatics tools are all based on 
evolutionary principles but target different types of genes 
and serve different purposes.

Currently, the best-studied class of natural product 
synthetic enzymes using evolutionary methods is modular 
enzymes, such as polyketide synthase (PKS) and non-
ribosomal peptide synthetase (NRPS). Based on the target 
gene cluster type, the study has classified the progress of 
evolution-guided research, mainly including PKS, NRPS, 
and other non-modular enzymes.

3. Evolution and big data-oriented PKS 
research
Polyketides are a large class of bioactive natural products 
with diverse structures and functions, and many clinically 
used drugs belong to this category, such as erythromycin, 
avermectin, and tetracycline. Polyketide biosynthesis 
is catalyzed by polyketide synthases (PKS). Currently, 
there are three known types of bacterial PKS (Type I, 
Type II, and Type III). Type I PKS forms an assembly 
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line composed of multiple modules, and each module 
contains core domains such as KS, AT (acyltransferase), 
and ACP (acyl carrier protein) that catalyze a cycle of 
polyketide chain extension. Some modules also contain 
domains like KR (ketoreductase), DH (dehydratase), and 
ER (enoylreductase) for varying degrees of polyketide 
modification [25] (Figure 3a). Type II PKS catalyzes the 
iterative condensation of acetate units through polyketide 
synthase (KS/KSα) and chain length factor (CLF/KSβ), 
followed by reduction, cyclization, and dehydration 
reactions to form a polycyclic aromatic skeleton (Figure 
3b) [26]. Type III PKS, also known as chalcone synthase-
like PKS, belongs to the homodimeric enzyme and is 
essentially an iteratively acting condensing enzyme 
[27,28]. Many researchers have attempted to understand 
the relationship between PKS genes and polyketide 
structures in nature from an evolutionary perspective. 
This is primarily due to the potential discovery of new 
bioactive polyketides through exploring the diversity of 
natural PKS, the unique example provided by the multi-
module structure of PKS for studying the evolution of 
multiple homologous but functionally distinct proteins, 
and the possibility of opening up new avenues for PKS 

engineering through a better understanding of natural 
polyketide diversification mechanisms [29].

3.1. Evolutionary mechanisms of PKS genes
Through evolutionary analysis of different PKS domains 
(such as KS, AT, and KR), it is currently believed that 
the evolutionary processes leading to the diversification 
of PKS assembly lines mainly include gene duplication, 
horizontal gene transfer,  gene conversion, and 
recombination (Figure 4a) [29]. The modularization of 
Type I PKS almost always originates from multiple 
copies of a single ancestral module [30]. Repeated modules 
provide an ideal platform for gene recombination, which 
can lead to corresponding changes in the chemical 
structure of the product [30]. Besides gene recombination, 
during gene evolution, DNA sequences may be non-
interactively transferred from one homologous region 
to another, homogenizing these homologous sequences, 
a process known as gene conversion. Gene conversion 
is widespread in Type I PKS [31]. The analysis of these 
“natural reprogramming” events in PKS may aid in the 
development of biocombinatorial designs for bioactive 
compounds [30].

Figure 3. (a) Biosynthetic pathway of type 
I PKS (biosynthesis of erythromycin as an 
example); (b) Biosynthetic pathway of type 
II PKS (biosynthesis of teracenomycin as an 
example).
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Figure 4. Evolutionary mechanism of PKS. (a) Main process for 
PKS evolution; (b) Updated definition of PKS module.

The evolution of cis-AT PKS is believed to primarily 
occur through module duplication and the horizontal 
or vertical acquisition of entire assembly lines [32]. 
Conversely, the trans-AT system exhibits a pronounced 
trend of recombination and chimerism leading to the 
formation of new gene clusters [33]. KS domains from 
closely related trans-AT PKS on the evolutionary tree 
often catalyze substrates with similar structures [33], 
while KS domains within the same gene cluster of cis-
AT PKS tend to have high sequence similarity [34]. Ikuro 
Abe et al. analyzed the gene clusters of four aminopolyol 
antibiotics (neomediomycin B, mediomycin, ECO-
02301, tetrafibricin) and found that the KS domains 
exhibited a closer evolutionary relationship with the ACP 
of the upstream module [27]. This suggests that in cis-AT 
PKS, the KS domain along with the ACP and modifying 
domains of the upstream module undergo recombination 
as a unit, with natural recombination occurring between 
KS and AT or AT and modifying domains [35,36]. Vander et 
al. subsequent analysis indicated that the KS domains of 
trans-AT PKS also show a closer evolutionary relationship 
with the ACP of the upstream module [37]. This aligns with 
the gating role of KS, as the structure of the KS substrate 
is determined by the composition of the upstream module. 
This has led to a redefined assembly line PKS module 
of AT-(DH-KR-ER)-ACP-KS, rather than the traditional 
KS-AT-(DH-KR-ER)-ACP (Figure 4b) [36].

Unlike KS, KR domains are classif ied on 
phylogenetic trees based on the stereoconfiguration of 
product hydroxyl groups [38] and, in the case of trans-
AT PKS, also based on the presence of other modifying 
domains [39]. One view is that this is because gene 
conversion does not necessarily affect all domains of a 
PKS module, so modifying domains does not always 
coevolve with KS [29]. This implies that there are also 
natural recombination sites within the module. It is 
noteworthy that concerted evolution, which leads to the 
homogenization of genetic sequences, frequently occurs 
in repetitive genetic regions like PKS [40], potentially 
obscuring evolutionary trajectories. Therefore, careful 
analysis is required to elucidate the precise evolutionary 
process of PKS.

The core KS and CLF genes of Type II PKS gene 
clusters are believed to originate from an ancient KS 
duplication [41]. They may have diverged from a common 
ancestor of FabF (a KS homolog protein in the fatty acid 
pathway) before the formation of the Actinobacteria 
phylum and then coevolved with little or no gene 
exchange [42]. Compared to the KS tree, the CLF tree 
has a clearer branching structure, and the evolutionary 
branches of CLF are more closely related to the number 
of polyketide structural units rather than the total carbon 
number [5]. Besides the KS and CLF genes, the polyketide 
reductase and cyclase in Type II PKS gene clusters are 
thought to have been exchanged into the gene clusters 
from other systems and subsequently evolved PKS-
specific functions [42].

3.2. Functional prediction of PKS
One of the most important applications of evolutionary 
analysis is to distinguish between paralogous (produced 
by duplication) and orthologous (produced by speciation) 
genes or proteins. Generally, homology is associated 
with similar functions [43]. Therefore, systematic genomic 
methods can be utilized to predict sequence functions 
based on evolutionary relationships, i.e., predicting the 
functions of genes with unknown functions based on their 
phylogenetic positions relative to known genes.

The functional prediction of PKS currently focuses 
primarily on the KS domain. The KS domain of type 
I trans-AT PKS [30,32], and the CLF domain branch of 
type II PKS [5,42] can form evolutionary branches closely 
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related to the chemical structure of their substrates. Thus, 
they can be used for compound structure prediction and 
isomerase prediction. The KS domain sequence can not 
only distinguish between polyketides and fatty acids, 
enediynes, and polyunsaturated fatty acids but also 
between different types of polyketides, such as cis- and 
trans-AT PKS, PKS/NRPS hybrids. NaPDoS utilizes this 
principle for enzyme function and compound structure 
prediction [18,19]. Additionally, the functions of modifying 
enzymes in type II PKS, such as the regioselectivity of 
KR and the cyclization mode of cyclases, can also be 
predicted through evolutionary analysis [42,44].

Besides inferring the substrates and functions of 
similar enzymes in the same family based on enzymes 
with known functions, unknown enzymes can also be 
studied based on gene coevolution. BGC has undergone 
various evolutionary processes, such as intra-genomic 
duplication, rearrangement, domain/module/gene 
exchange, and horizontal gene transfer [30,40]. Enzymes that 
interact within the same cluster require a coevolutionary 
process to maintain appropriate interactions [6]. 
Therefore, the function of unknown enzymes can also 
be predicted based on the enzymes that interact with 
them. Crusemann’s research group discovered a KS 
branch containing the TE B domain (responsible for 
O-acetylation) through evolutionary analysis of KS in 
trans-AT PKS. Based on the product structure and the 
missing HGTGT active site, it is inferred that these 
KS are non-extending KS0. Although they catalyze 
different polyketide structures, the TE B modules share 
biochemical consistency [47].

In bacterial type I PKS, besides the KS domain, 
which can form evolutionary branches closely related to 
the chemical structure of the substrate, the AT domain 
also forms two main branches on the evolutionary 
tree, with specificity for receiving malonyl-CoA and 
methylmalonyl-CoA, respectively [46]. The specific 
recognition of malonyl-CoA and methylmalonyl-
CoA by the AT domain can be predicted through two 
characteristic regions in the sequence. The HAFH and 
GHS(I/V)G sequences indicate its reception of malonyl-
CoA, while YASH and GHSQG indicate its reception of 
methylmalonyl-CoA [47–49]. This discovery has long been 
used to distinguish the substrate selectivity of these ATs.

3.3. Gene mining of PKS
The theoretical foundation of PKS gene mining lies in 
the use of evolutionary analysis of the KS domain for 
compound structure prediction and isomerase prediction. 
Evolutionary analysis conducted on KSα and CLF 
(also known as KSβ) within aromatic polyketide BGCs 
has revealed that the phylogenetic tree structure and 
branching patterns of KSα and CLF are highly similar, 
clustering based on the chain length of the corresponding 
polyketide compounds. Therefore, KSα and CLF can 
serve as ideal evolutionary markers representing the 
entire gene cluster [42]. Brady’s research group used 
CLF sequences as evolutionary markers to amplify 
related genes from soil microbiota. By comparing these 
sequences with known CLF genes and conducting 
evolutionary analysis, they discovered many sequences 
that fell into different sub-branches of the same clade 
as known sequences. Through heterologous expression 
of the corresponding gene clusters in the Streptomyces 
albus J1074 strain, they identified structurally novel 
and significantly active polyphenols and anthracycline 
compounds (1–3) [50,51]. Recently, some research applied 
global genome mining in type II PKS and discovered 
oryzanaphthopyrans (4) from an evolutionary branch 
distant from known gene clusters. Evolutionary analysis 
based on big data also provided a comprehensive view 
of the distribution, abundance, and diversity of type II 
PKS [5]. Li et al. (2022) utilized the evolutionary pattern 
of CLF combined with resistance gene targeting to 
mine tetracycline compounds, discovering the highly 
glycosylated tetracycline hainanmycin (5) [52]. These 
studies, which either do not require microbial cultivation 
or can predict the structural novelty and bioactivity level 
of compounds before microbial cultivation, demonstrate 
the advantages of evolution-guided gene mining.

In type I PKS, the KS of trans-AT PKS can also form 
evolutionary branches closely related to the chemical 
structure of its substrates [53]. Crusemann et al. utilized a 
KS database search to discover sequences closely related 
to mis PKS (misakinolides PKS) evolutionarily, ultimately 
identifying their product as the dimeric macrolide 
luminaolide B (6). By studying the biosynthesis and 
evolutionary relationships of misakinolides, scytophycin, 
and luminaolides, they found that their gene clusters 
originated from a common ancestor, achieving structural 
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diversification through the loss or acquisition of upstream 
or terminal PKS sequences [54]. To enable structural 
prediction of trans-AT PKS products and understand the 
biosynthetic basis and evolutionary patterns of trans-
AT PKS, Crusemann et al. and Medema et al. developed 
the online tools transATor and transPACT. TransATor 
takes PKS sequences as input and predicts KS substrate 
specificity, and the corresponding polyketide core 
structure [55]. Using this tool, they discovered tartrolon-
like compounds and leptolyngbyalide. TransPACT is 
a trans-AT PKS annotation and comparison tool that 
automatically forms functional branches of KS and 
identifies continuous modules shared by different PKS 
assembly chains. They utilized transPACT to obtain 1782 
trans-AT PKS gene clusters from GenBank, analyzed 
them using antiSMASH, extracted KS sequences for 
evolutionary analysis, and performed gene mining 
based on the generated module-sharing network and 
phylogenetic tree. This led to the discovery of new trans-
AT PKS products such as secimide (7), gynuellalide (8), 
and spliceostatin L (9), and explored the sequence-level 
correlations of similar chemical structures [56]. These 
studies demonstrate that evolutionary analysis of the 
KS domain in trans-AT PKS can guide the discovery 
of structurally novel polyketide compounds, while also 
providing a foundation for PKS engineering to produce 
non-natural trans-AT PKS polyketide products.

Guo et al. (2016) utilized evolutionary analysis of 
KS sequences to mine type I PKS products from plant 
endophytic fungi, discovering the natural pigment talafun 
(10) with antibacterial activity. This study shows that 
using the highly conserved KS domain as an evolutionary 
marker can quickly link fungal genetic information 
and chemical structures, serving as a routine method 
for high-throughput sequencing technology in practical 
applications [57].

Besides PKS itself, co-evolving genes within the 
same cluster can also be used for gene mining. Enediynes 
are a class of linear polyenes produced by type I PKS 
with extremely high activity, often used as antibody-drug 
conjugates in clinical trials [58]. Shen et al. (2015) targeted 
two different enediyne biosynthetic gene sets, E5/E 
and E/E10, using real-time quantitative PCR to mine 
enediyne compounds from 3,400 strains. Through PCR, 
they identified 81 strains harboring enediyne polyketide 
synthase genes. Simultaneously, evolutionary analysis 
of gene E revealed that many clusters were distinct from 
known ones. To confirm these results, they performed 
genome sequencing on 31 representative strains, 
conducted GNN (Genome Neighborhood Network) 
analysis on the relevant gene clusters, and discovered 
gene clusters significantly different from known ones. 
Finally, through isolation and identification, they 
discovered the active compound tiancimycin A (11) [58,59]. 

Figure 5. The structure of polyketides molecules 1–10 was obtained by phylogeny-guided genome mining (compounds 1–5 were aromatic 
polyketides discovered by genome mining of type II PKS. Compounds 6–9 were discovered by genome mining of trans-ATPKS. Compound 
10 was discovered by genome mining of fungal type I PKS. Compounds 11 were enediynes).
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These studies lay a foundation for mining more enediyne 
compounds or synthesizing enediyne homologs using 
PKS.

3.4. Biosynthetic engineering of PKS
In fact, since the identification of the modular 
characteristics of type I PKS more than thirty years ago, 
researchers have attempted to generate novel non-natural 
polyketide compounds through the recombination of 
modules and domains [60]. Due to its modular nature, PKS 
provides a versatile synthetic platform, for example, as 
an effective method for synthesizing specific organic 
acids [61]. However, in some early attempts to engineer the 
PKS assembly line, exchanging or deleting domains and 
modules often resulted in significantly reduced or even 
inactive enzyme activity [52], presumably related to protein 
interactions [53] and substrate selectivity [54].

Simultaneously, increasing evidence suggests that 
a better understanding of the evolution of assembly line 
systems can further enhance the ability to engineer these 
systems (Figure 6a) [29,35,62]. Drew et al. constructed multiple 
hybrid PKSs based on newly defined module boundaries, 
selecting cleavage points between KS and AT. The 
production of target compounds was significantly increased 
(10 to 48 times higher compared to hybrids constructed 
based on traditional definitions) (Figure 6b) [63–65].

Hertweck et al. analyzed the phylogenetic trees 
of KS from various modules within several polyketide 
biosynthetic gene clusters. Through different methods 
of cleavage and fusion, they demonstrated that 
the addition or deletion of modules during natural 
evolution might occur at the KS-AT junction. By 
analyzing the substrate specificity of the P450 
modifying enzyme within the gene cluster, they further 
inferred the evolutionary order of PKS [66]. Similarly, 
besides the aforementioned KS-AT junction, the post-
AT junction has also been proven to be an effective site 
for module fusion and domain exchange [67–69]. A similar 
“cut-and-paste” strategy utilizing naturally preferred sites 
may also apply to the engineering of trans-AT PKS [54].

Zargar  et  a l .  (2020)  per formed sequence 
alignments and exchanged KR or KR-DH-ER units 
between modules. Both in vitro and in vivo experiments 
demonstrated the feasibility of this strategy (Figure 6c) 
[69–72], further indicating that the reducing domains may 
represent potential recombination units during evolution. 
On the other hand, some studies attempted to reverse 
the selectivity of AT [73] and KR [74] active sites through 
multiple point mutations. However, when these mutations 
were applied to the entire module, the expected product 
could not be obtained specifically. This suggests that 
PKS does not rely solely on point mutations but rather on 

Figure 6. Evolution-guided engineering for PKS. (a) Natural recombination site for PKS; (b) Comparison of product yield 
between traditional definition-based and updated definition-based PKS engineering; (c) Engineering of reductive domains in PKS. 
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domain exchanges resulting from genetic recombination 
to alter domain selectivity [29].

Although the structures of individual or multiple 
domains, and even entire modules of PKS, have been 
resolved through X-ray single crystal diffraction and 
cryo-electron microscopy techniques [75–81], revealing 
the importance of protein interactions in various stages 
of polyketide chain elongation and some critical protein 
interaction sites, the underlying synergistic effects of 
various domains during the catalytic process of PKS 
have not been fully elucidated. Rational design and 
modification based on three-dimensional structures 
remain challenging. Therefore, analyzing the evolutionary 
relationships of entire PKS or individual domains from 
the perspective of natural evolution, inferring the sites 
of natural recombination as entry points for artificial 
modification, and selecting appropriate candidate PKS 
for hybrid PKS construction based on evolutionary 
relationships, provides researchers with a new evolution-
guided approach for PKS modification.

4. Evolution and big data-oriented NRPS 
research
Non-ribosomal peptide synthetases (NRPSs) are multi-
module enzymes or enzyme complexes derived from 
bacteria and fungi. Many of the peptide compounds they 
catalyze have important biological activities, and some 
are used clinically, such as cyclosporine, vancomycin, and 
daptomycin [82–84]. Based on differences in their overall 
structures, NRPSs are typically classified into type I and 
type II [85]. Type I NRPSs are large modular complexes 
that produce peptide compounds in a similar assembly 
line manner to type I PKSs. Each module mainly consists 
of three domains: C (condensation), A (adenylation), 
and T (thiolation, also known as a carrier protein), or 
other modifying domains such as E (epimerization). 
Type II NRPS proteins are typically independent 
enzymes or two domains that work together to form 
unique amino acid derivatives [85]. During the synthesis 
of peptide compounds by NRPSs, the A domain selects 
specific amino acid monomers, which are activated 
by ATP to form aminoacyl-AMP and then transferred 
to the carrier protein T. The C domain condenses the 
activated aminoacyl (peptidyl) thioesters to extend the 

chain through the formation of amide bonds. Like PKSs, 
NRPSs are significant for exploring active molecules and 
studying enzyme catalysis and protein interactions.

4.1. Evolutionary mechanisms of NRPS
Similar to PKSs, natural gene recombination plays 
a crucial  role in the evolution of NRPSs. The 
diversification of non-ribosomal peptides is primarily 
dr iven by the recombinat ion of  A domains or 
subdomains [86]. Recombination within the A domain 
occurs in the variable part of the A core to regulate 
substrates, while interactions between domains and the 
A sub are largely unaffected [63,87].

Another core domain of NRPS, the C domain, can 
be classified into three types based on stereoselectivity: 
LCL, DCL, and starter C domain (CS or starter C). 
Although LCL and starter C domains show substrate 
differences (amino and β-hydroxy carboxylic acids) 
due to certain sequence variations, they appear to 
be more closely related to the evolutionary tree than 
other subtypes [88]. Studies have indicated that the 
stereochemical selection of the C domain is related to 
the function of the E domain [89]. In bacterial NRPSs, 
the PCPE-E-DCL sequence is almost universally 
conserved, suggesting that despite numerous genomic 
replication, insertion, deletion, and recombination events 
in evolutionary history, the E-DCL linker region has 
maintained strong selective pressure [89].

4.2. Functional prediction of NRPS
Based on the evolutionary mechanism of NRPS, there is 
a direct relationship between the domain sequence on the 
NRPS assembly line and the product’s chemical structure. 
This relationship makes it possible to predict the chemical 
structure of peptide compounds from DNA sequences.

In 1991, Stachelhaus et al. (1999) reported 
groundbreaking work on predicting the substrate 
specificity of A domains. They observed a strong 
correlation between the phylogenetic tree of A domains 
and substrate categories (Figure 7a). Secondly, they 
discovered that 10 key amino acid sequences (known 
as the Stachelhaus code) forming the substrate-binding 
pocket in the A core region are highly correlated with the 
substrates they receive [90]. Subsequently, several tools 
for predicting NRPS A domain substrates have been 
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developed and utilized, such as NRPSpredictor2 [91] and 
SANDPUMA [92]. The development of these prediction 
tools has greatly assisted in gene mining for discovering 
novel natural products, and on the other hand, they 
can also help find suitable candidate genes for NRPS 
assembly line modification.

The A domain of NRPS serves as an evolutionary 
signal at the “substrate level” and can be used to predict 
substrate specificity, while the C domain of NRPS acts 
as an evolutionary signal at the “pathway level” and 
can be employed to predict BGC patterns of similar 
molecules [93]. Besides the original C domain, the C 
domain superfamily includes several other members 
that also belong to the NRPS domain, such as CS, 
DCL, LCL, E (epimerization), Cyc (heterocyclization), 
Dual C (epimerization/condensation), and modAA C 
(dehydroamino acid-related). Due to their different 
functions, these domains form distinct branches on 
the phylogenetic tree (Figure 7b) [89,94]. Therefore, 
evolutionary analysis of the C domain can be utilized for 
functional prediction of related domains in NRPS.

4.3. NRPS gene mining
The substrate selectivity of the A and C domains in 
NRPS, along with the catalytic sequence of different 
modules, determines the order of amino acid connections. 
This means that the structure of non-ribosomal peptide 
compounds can be directly correlated with the NRPS 
sequence. Therefore, evolutionary analysis of the A or C 
domains can be utilized for NRPS gene mining.

Calcium-dependent antibiotics are a class of cyclic 

peptides that require calcium ions to exert their activity. 
Known compounds of this type share a conserved Asp4-
X-Asp6-Gly7 segment that promotes their binding to 
calcium ions. Based on this, Brady et al. amplified the 
A domains of NRPS from soil eDNA using PCR and 
analyzed the amplified sequences using eSNaPD. The 
evolutionary tree of the tag sequences revealed many 
evolutionary branches of the Asp4 domain that are distant 
from known BGCs, suggesting the presence of unknown 
calcium-dependent antibiotics in the soil microbiome. 
Through heterologous expression, they identified a new 
class of calcium-dependent antibiotics called malacidins 
(11) [95].

Although metagenome-based antibiotic discovery 
methods are still in their infancy, the scaled and 
automated approaches described in the above study 
provide a potentially powerful method for efficiently 
mining antibiotics hidden in the metagenome and 
combating antibiotic resistance.

In 2020, Culp et al. (2020) collected 71 gene clusters 
of glycopeptide antibiotics. Using the C domains from 
these gene clusters, they constructed an evolutionary 
tree to predict potentially new biologically active 
glycopeptide compounds. This led to the discovery of 
two novel glycopeptide antibiotics, corbomycin (12) 
and complestatin (13), which inhibit bacterial growth 
by binding to peptidoglycan and blocking the action 
of autolysins (peptidoglycan hydrolases necessary for 
cell wall remodeling during growth) [96]. Recently, the 
same research group expanded their candidate BGCs 
using glycopeptide antibiotic fingerprint sequences. 

Figure 7. (a) Prediction for substrates 
of A domains using phylogeny-guided 
method; (b) Unrooted phylogenetic 
tree of the C-domain superfamily [90].
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Through evolution-guided gene mining and heterologous 
expression, they identified five new type V glycopeptide 
antibiotics (type V GPAs), rimomycins (14), and 
misaugamycins (15). These antibiotics also inhibit cell 
division by preventing autolysin activity, demonstrating 
their mechanism of action [97]. These discoveries expand 
the chemical diversity of type V GPAs, providing new 
chemical scaffolds for drug development and showcasing 
the significant potential of evolution-based bioinformatics 
platforms in mining the chemical “dark matter” of 
glycopeptide antibiotics.

Accurate prediction of NRPS has also facilitated the 
development of biologically active peptides independent 
of traditional isolation techniques. Brady et al. utilized 
bioinformatics predictions of lipopeptides and obtained 
a lipopeptide called cilagicin (16) through chemical 
synthesis, which exhibits strong antibacterial activity. 
Cilagicin exerts its antibacterial effect by blocking two 
essential undecaprenyl phosphates involved in cell wall 
biosynthesis [98]. This study was based on an evolutionary 
tree analysis of the CS domain, leading to the discovery 
of an orphan BGC. The combination of compound 
structure prediction and chemical synthesis then yielded 
the corresponding product, circumventing issues such as 
non-expression of the target gene cluster or low product 
yield.

4.4. Biosynthetic engineering of NRPS and 
NRPS-PKS hybrids
4.4.1. NRPS 
Currently, there have been many attempts to biosynthetically 
engineer NRPS, which can mainly be categorized into the 
following types: (1) Substituting A domains or A-T domains 
to change the extension units [99]; (2) Modifying the 
substrate-binding pocket of A domains [100,101]; (3) Swapping 
C-A or C-A-T domains [102].

Through A domain substitution, Calcott et al. [86] 
efficiently obtained high-yield modified pyoverdine 
peptides, determining the permissible boundaries for A 
domain recombination (Figure 9a). Crusemann et al. [103] 
analyzed the nucleotide sequences of seven A domains 
in the hormaomycin biosynthetic gene cluster and found 
that, apart from approximately 400 base pairs related to 
the substrate recognition pocket, the remaining sequences 
showed over 90% similarity, suggesting potential natural 
recombination sites. Based on this hypothesis, using 
sequence boundaries inferred from natural recombination, 
three chimeras were constructed using the third A domain 
of HrmO as a template. In vitro experiments demonstrated 
successful transfer of A domain substrate specificity while 
maintaining a high conversion rate. Following the same 
strategy, Kries et al. transplanted nine different substrate 
specificities into the GrsA module of the gramicidin S 

Figure 8. The structure of peptide molecules 11–16 was obtained by phylogeny-guided genome mining (compound 11 was a calcium-
dependent antibiotic discovered by genome mining of A domain; compounds 12–15 belonged to the glycopeptide family of antibiotics 
discovered by genome mining of the C domain; compound 16 was a lipopeptide antibiotic discovered by NRPS prediction).
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biosynthetic gene cluster (Figure 9b) [104].
The C domain and C-A linker affect the catalytic 

activity and substrate selectivity of the A domain. Unlike 
strategies that only alter the core sequence of the A 
domain, Bozhüyük et al. (2019) defined A-T-C or A-T-C/
E as exchange units, introducing the concepts of XU 
(exchange unit) and XUC (exchange unit condensation 
domain) [105–108]. It was believed that the C-A linker is an 
ideal recombination site because sequence alignment 
shows low conservation in the A-T and T-C linkers, and 
they may be involved in important protein interactions 
during the catalytic cycle, while the interaction between 
C and A domains mainly relies on hydrophobic effects. 
Although hybrid NRPSs constructed based on these 
exchange units show reduced yields compared to the 
wild type, they can still produce enough target products 
for activity analysis (Figure 9c), and in a few cases, they 
achieve yields comparable to the wild type. Interestingly, 
this exchange unit is similar to the new definition of 
PKS module boundaries. Considering that the C domain 
also has a gating function, it can be inferred that there 
may be a certain correlation between the C domain 
and the upstream A-T domain in terms of evolutionary 
relationships.

4.4.2. NRPS/PKS hybrids 
Polyketides and polypeptides have distinctly different 
backbones, and the hybridization of NRPS and PKS 
greatly promotes the diversification of natural product 

types. Modifying NRPS/PKS assembly lines is an 
effective method to produce novel biologically active 
molecules. In fungi, highly reducing polyketide synthases 
(HR-PKS) can form hybrids with NRPS, synthesizing 
a series of fungal polyketide compounds represented by 
the pyridone skeleton. Minami et al. (2020) analyzed 
884 PKS-NRPS hybrid enzymes in fungal genomes 
from NCBI and found a clear correspondence between 
the branches of the enzymatic phylogenetic tree and the 
molecular skeletons of the products, providing a macro 
perspective on the distribution and structural diversity of 
fungal PKS-NRPS gene cluster products [109].

Bacterial PKS-NRPS hybrid enzymes are modular 
assembly line enzymes that synthesize compounds like 
bleomycin. Although many questions remain about 
the evolutionary mechanisms of PKS and NRPS [29], 
evolutionary analysis has revealed some natural 
recombination sites that can serve as cutting points for 
module modification and domain fusion. The NRPS-
PKS hybrid enzyme synthesizes the di-depsipeptide 
compound antimycins. Sequence analysis suggests that 
they may have evolved from the same ancestor as the 
trilactone JBIR-06 and the tetralactone neoantimycin A. 
Inspired by this, Ikuro et al. further inferred the site of 
natural recombination, added or subtracted modules from 
the JBIR-06 and neoantimycin A synthase, and achieved 
control over the ring size of the depsipeptide compounds 
through heterologous expression [110]. This study confirms 
that the aforementioned PKS and NRPS engineering 

F i g u re  9 .  E v o l u t i o n - g u i d e d 
engineering for NRPS. (a) Swap of 
A domain; (b) Swap of A subdomain; 
(c) Swap of A-T-C.
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strategies are also applicable to the NRPS-PKS hybrid 
enzyme system by analyzing the natural recombination 
and evolution process of NRPS-PKS hybrids [110].

5. Research on non-modular enzymes 
guided by evolution and big data
5.1. Mining of non-modular biosynthetic 
enzyme genes
5.1.1. RiPPs (Ribosomally-synthesized and post-
translationally modified peptides) synthetase
Unlike polyketides and non-ribosomal peptides, 
the biosynthetic pathway of RiPPs lacks common 
biosynthetic features, making it difficult to perform 
reliable bioinformatics prediction on their gene clusters 
[111]. Prediction tools for RiPPs can rely on precursor 
peptide characteristics or modifying enzymes. Lu 
et al. (2022) explored the underlying logic of RiPPs 
biosynthesis through deep learning and proposed a 
combined model called BERiPPs (Bidirectional language 
model for Enhancing the performance of identification of 
RiPPs precursor peptides) based on the BERT pre-training 
model. BERiPPs can indiscriminately identify RiPPs 
precursor peptides without considering the genomic 
background and predict the cleavage site of the leader 
peptide, providing ideas for high-throughput mining of 
new RiPPs [112].

YcaO is a known modifying enzyme in RiPPs 
that catalyzes the formation of oxazolines, thiazoles, 
amidines, and thioamides. It can form thioamides when 
working together with the TfuA protein. Medema et 
al. (2013) screened 229 TfuA homolog proteins in 
actinomycetes and used a new gene mining tool, RiPPER, 
to retrieve their potential BGCs and 743 polypeptides, 
obtaining 74 different polypeptide networks. They then 
used MultiGeneBlast [113] to compare the gene clusters 
corresponding to each network and finally discovered a 
new class of thioamide compounds, thiovarsolins. They 
also demonstrated a strong correlation between TfuA 
evolution and precursor peptide similarity [111].

The biosynthesis of lasso peptides typically requires 
two enzymes: a lasso cyclase and a precursor peptidase. 
Tietz et al. (2017) developed an algorithm called RODEO 
for BGC identification, which outputs graphs and 
tables of BGCs and polypeptides for analysis. RODEO, 

optimized for lasso peptides, summarized all potential 
lasso peptide gene clusters in GenBank, evaluated 
the obtained lasso peptides based on length and basic 
sequence features, and divided them into predicted 
leader and core regions. They constructed a sequence 
similarity network of 1315 lasso peptide precursors and 
identified six new lasso peptides [114]. This discovery 
expands the diversity of lasso peptides and provides a 
framework for future genomic mining of lasso peptides.

In addition, based on advances in machine learning 
technology, Merwin et al. (2020) developed DeepRiPP, 
which integrates genomic and metabolomic data and uses 
machine learning to automatically discover and isolate 
new RiPPs. DeepRiPP is implemented through three 
modules: identifying RiPPs independent of genomic 
structure and adjacent biosynthetic genes, preferentially 
selecting gene loci encoding new compounds, and 
automatically isolating corresponding products from 
complex bacterial extracts. They used DeepRiPP to 
perform large-scale comparative metabolomic analysis 
on a database of 10,498 extracts from 463 strains and 
finally discovered three novel RiPPs with structures 
fully consistent with platform predictions [115]. DeepRiPP 
improves the efficiency of RiPPs gene mining and 
demonstrates the application prospects of machine 
learning technology in microbial gene big data mining.

5.1.2. Terpene synthases 
Terpenoids are important natural product types commonly 
found in fungi and plants. They are biosynthesized from 
linear precursors such as monoterpenes, sesquiterpenes, 
and diterpenes, formed by the condensation of IPP 
(isopentenyl diphosphate) and DMAPP (dimethylallyl 
diphosphate). Terpene synthases then catalyze diverse 
cyclization reactions to form complex carbon skeletons. 
Compared to plant and fungal terpene synthases, bacterial 
terpene synthases generally have low sequence similarity. 
Martin-Sanchez et al. (2019) conducted a whole-genome 
phylogenetic analysis of Streptomyces, comparing the 
distribution of terpene synthase genes and performing 
evolutionary analysis on these enzymes. They found that the 
evolution of these enzymes did not align with the evolution 
of Streptomyces, suggesting that horizontal gene transfer 
may be an important mechanism for the distribution of 
terpene synthase genes in Streptomyces [116]. Additionally, 



2023 Volume 1, Issue 2

-22-

they discovered that Streptomyces terpene synthases can 
be classified into ten groups on the evolutionary tree, with 
geosmin synthase being the most abundant. To explore 
the evolutionary relationship between bacterial and fungal 
terpene synthases, Avalos et al. (2022) conducted an 
evolutionary analysis of 908 fungal terpene synthases and 
1,535 bacterial terpene synthases. Their study indicated 
that fungi also acquired terpene synthases from bacteria 
through horizontal gene transfer [117]. Furthermore, there 
is increasing evidence in recent years that horizontal gene 
transfer plays a significant role in the evolution of terpene 
biosynthetic pathways [118].

Diterpenes are terpenoids composed of four 
isoprene units,  widely distributed in the plant 
kingdom. Many of their oxygenated derivatives, such 
as paclitaxel and triptolide, exhibit strong biological 
activities. Diterpenes have also been found in microbial 
metabolites, but compared to plant-derived diterpenes 
and enzymes, research on diterpene synthases from 
fungi is limited. To mine potential diterpene synthase 
encoding sequences from public databases, Yang et al. 
(2017) used the EriG protein (a cyclase forming the 
cyathane skeleton in Hericium erinaceus, belonging to 
the UbiA superfamily) sequence as a probe for genome 
mining. Through sequence clustering analysis and 
phylogenetic tree analysis, they discovered a new family 
of diterpene cyclases (cluster 11) related to UbiA in 
bacteria and fungi. By expressing and characterizing 
these enzymes in Escherichia coli, they identified seven 
new diterpene cyclases and determined the structures of 
their corresponding products, including a new diterpene 
called lydicene with an unusual skeleton [119]. This study 
enriched the diversity of diterpene cyclases in bacteria 
and fungi, updated the members of the UbiA superfamily, 
and provided new opportunities for the application 
of microbial diterpene synthases in biocatalysis and 
metabolic engineering.

Recently, Chen et al. (2021) conducted a systematic 
evolutionary study on fungal sesquiterpene biosynthetic 
enzymes. Sesquiterpenes are synthesized by chimeric 
terpene synthases (PTTS) consisting of a C-terminal 
prenyltransferase (PT) domain and an N-terminal type I 
terpene synthase (TS) domain. Using the TS functional 
domains of 18 PTTSs, they constructed a phylogenetic 
tree and found that PTTSs form six major branches, 

corresponding to different cyclization products [120]. Chen 
et al. (2021) further expanded the PTTS phylogenetic 
tree analysis, combining gene mining to reveal that the 
six major branches roughly correspond to two major 
cyclization patterns of the isoprenoid linear precursor: the 
Type A reaction involving cyclization between the fourth 
and fifth double bonds, and the Type B reaction involving 
cyclization between the third and fourth double bonds [120]. 
Utilizing PTTS phylogenetic tree-based gene mining, Tao 
et al. (2022) discovered three fungal-derived triterpene 
synthases and their corresponding triterpene products for 
the first time [121]. Among them, the cyclization patterns 
catalyzed by triterpene synthases MpMS and CgCS do 
not fit into the aforementioned two categories, indicating 
the limitations of sequence-based functional prediction of 
terpene synthases and their rich catalytic plasticity.

5.1.3. Other genes 
In PKS, the KS that catalyzes the Claisen condensation 
reaction to form the polyketide backbone belongs to the 
thiolase superfamily [122]. Evolutionarily, members of this 
superfamily share functional clusters with branches and 
have diverged from a thiolase-like ancestor similar to 
archaeal thiolase. Considering their evolutionary diversity 
and structural similarity, Tan et al. (2020) hypothesized 
that enzymes other than PKS in the thiolase superfamily 
can catalyze iterative Claisen condensation reactions to 
synthesize polyketide skeletons. They demonstrated the 
feasibility of this pathway by synthesizing representative 
polyketide compounds such as lactones (triacetic acid 
lactones), alkylresorcinolic acids, alkylresorcinols, 
hydroxybenzoic acids, and alkylphenols [123]. This 
discovery can be extended to other thiolases to further 
elucidate their structural and functional relationships and 
harness their biosynthetic potential for PKS research [123].

Terminal alkynes are functional substances widely 
used in organic synthesis, medical science, materials 
science, and biochemistry. They can be catalyzed by 
a special desaturase enzyme, acetylene enzyme, in 
microorganisms [124]. Zhu et al. (2015) elucidated the 
functions of JamA, JamB, and JamC in the biosynthesis 
of the terminal alkyne jamaicamide. Using the key 
enzyme for alkyne formation, jamB gene, as a probe, they 
performed evolutionary analysis on its sequence-similar 
genes to screen for new alkyne gene clusters. They 
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discovered a new terminal alkyne biosynthetic mechanism 
consisting of TtuA, B, and C, thereby expanding the 
research model for terminal alkyne biosynthesis and 
offering broad application prospects in synthesis and 
chemical biology [125,126].

Indolocarbazole is a natural product used as a 
lead compound for anticancer drugs. Its core structure 
is formed by the dimerization of two molecules of 
oxidized tryptophan catalyzed by chromopyrrolic acid 
(CPA) synthase. Phylogenetic analysis of CPA synthase 
homologous genes in soil metagenomes led to the 
discovery of new indole tryptophans, borregomycins 
A-D, erdasporine A-B, and reductasporine [15,127,128].

Ansamycins are an important family of natural 
products in clinical settings. These compounds are 
characterized by the presence of an aromatic core derived 
from the common precursor 3-amino-5-hydroxybenzoic 
acid (AHBA). Evolutionary analysis of AHBA synthase 
homologous genes in Streptomyces resulted in the 
discovery of 25 ansamycins from six strains, including 
eight new compounds such as juanlimycins and 
neoansamycin [15].

Evolution-guided gene mining methods involve 
the evolutionary analysis of biosynthetic genes for 
compounds, such as acetylene enzymes that catalyze 
terminal  alkyne formation,  CPA synthases for 
indolocarbazole formation, and AHBA synthases for 
ansamycin formation. This approach allows for the 
discovery of active compounds with similar functional 
groups and enables the retrieval of special compound 
BGCs that cannot be directly detected using antiSMASH 
or ClusterFinder [129]. It provides a feasibility validation for 
developing evolution-based bioinformatics approaches.

5.2. Natural product discovery targeting 
resistance genes
One of the primary goals of natural product discovery is 
to identify new antibiotics with novel modes of action 
to combat multidrug resistance in pathogenic bacteria. 
To avoid harming themselves with the antibiotics they 
produce, microorganisms have evolved several resistance 
strategies to circumvent self-toxicity. These strategies 
include product modification, substrate transport and 
binding, target duplication or modification, and are 
encoded by resistance genes located near the antibiotic 

BGC [130]. The presence of resistance genes within a gene 
cluster can serve as a window to predict the biological 
activity of the natural product synthesized by that pathway. 
Natural product discovery based on self-resistance gene 
identification helps bridge the gap between activity-guided 
and genome-guided methods in natural product discovery 
and functional assignment [10,131].

In recent years, there have been efforts to utilize 
evolutionary thinking in targeting resistance genes 
for natural product discovery. For example, the 
aforementioned ARTS is an evolution-guided gene 
mining tool that targets resistance genes [16,17]. Using the 
ARTS detection mode, Adamek et al. analyzed all known 
BGCs and available bacterial genomes containing known 
drug-resistance target genes. Besides the 26 known 
gene clusters in the MIBiG database, they detected 
22 additional gene clusters with resistance targets, 
demonstrating the potential of evolution-guided gene 
mining.

The transcriptional regulators tetR/marR and 
resistance transporters like tetA are a common pair of 
resistance genes in tetracycline biosynthesis. Resistance 
transporter proteins are tetracycline/metal proton 
antiporters located on the cell membrane, while the 
regulatory protein TetR is a tetracycline-inducible 
repressor. Based on the resistance mechanism of the 
tetracycline BGC, Li et al. (2022) used TetR/MarR-
transporters as indicators for mining tetracycline-like 
natural products. Combining this with a phylogenetic 
analysis of chain length factors (CLFs) for further 
refinement, they discovered 25 different tetracycline gene 
clusters and ultimately isolated a new tetracycline called 
hainanmycin [52]. This gene mining approach, targeting 
both resistance genes and type II PKS genes, offers the 
possibility of specific and efficient discovery of novel 
antibiotics.

5.3. Evolution-guided non-modular enzyme 
engineering
Biosynthet ic  enzyme engineer ing inspired by 
evolutionary analysis is not limited to multi-modular 
enzymes such as PKS and NRPS. Bernhardsgrutter et al. 
(2019) [132] performed cluster analysis (Figure 10a) by 
combining enoyl-CoA carboxylase/reductase (ECR) with 
other medium-chain dehydrogenase/reductases (MDR). 
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They found that propionyl-CoA synthase (PCS) and 
archaeal enoyl reductase (AER) may have evolved from 
a common ancestor with ECR and possess potential CO2 
binding pockets and carboxylation functions. Under a 
certain CO2 concentration, both PCS and AER exhibited 
weak carboxylation activity, but mainly produced 
reduction products (greater than 95%). Combining with 
a three-dimensional structural model, the authors further 
analyzed the sequences of the CO2 binding pockets and 
mutated key amino acids. By enhancing CO2 binding 
and preventing water from entering the pocket, they 
successfully activated the carboxylation functions of 
PCS and AER. The proportion of carboxylated products 
increased by about twenty times, becoming the main 
product (Figure 10b).

The aforementioned research elucidates the 
evolution of specific protein functions through the 
comparison of homologous proteins, a method commonly 
referred to as “horizontal.” This approach is based on the 
analysis of proteins found in extant species at a particular 
evolutionary stage. However, phylogenetic algorithms add 
a vertical dimension to sequence analysis, enabling the 
tracing of common ancestors from extant sequences [133]. 
Ancestral sequence reconstruction (ASR) is a powerful 
tool for inferring original sequences from modern (i.e., 
extant) sequences [134]. A fundamental element of ASR is 
the computation of phylogenetic trees, where the leaves 
represent selected extant sequences, and the reconstructed 
sequence associated with the tree root represents the 
common ancestor of the studied sequences. If this 
sequence encodes a protein, the ancestral protein can 

be “resurrected” through gene synthesis techniques and 
studied for its biochemical properties using biochemical 
experiments. ASR also allows for the derivation of 
sequences for all internal nodes in the tree, further 
elucidating evolutionary processes [133].

6. Summary
BGCs can effectively disperse through widespread 
horizontal gene transfer, even crossing the boundaries 
of phyla. Thus, evolutionary-based discovery strategies 
in natural product research powerfully complement 
traditional methods in terms of increasing novelty. The 
development and application of bioinformatics analysis 
tools based on evolutionary principles have generated 
growing genetic (gene), catalytic (protein), and chemical 
(compound structure) databases. These advances have 
propelled natural product research into the modern era of 
big data, making it possible to visualize the panoramic 
landscape of natural products [1,2,6]. Natural products 
obtained through these strategies deepen the understanding 
of the synthetic pathways of naturally bioactive molecules 
and enrich the library of bioactive compounds.

As the quantity and quality of natural product-related 
research increase, the potential for applying artificial 
intelligence analysis methods, such as machine learning, 
is also growing. Combining evolution-guided approaches 
with artificial intelligence represents one of the future 
directions in this field. Successful machine learning 
methods require high-quality training data, which may 
necessitate coordinated efforts across laboratories and 

Figure 10. (a) Phylogenetic analysis 
of MDR; (b) Engineering for AER and 
PCS.
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even internationally to generate and manage datasets in a 
standardized manner [135]. This relies on the development 
of bioinformatics [136].

Natural product mining based on evolution and big 
data is inherently limited by the amount and scope of 
sequenced genomic data and faces several challenges: 

(1) Many microorganisms containing target BGCs 
are non-culturable under laboratory conditions 
or do not express the target gene clusters. 
Currently, the main solution to this problem 
relies on the development of molecular biology 
techniques such as heterologous expression. 
Therefore, improvements in techniques such as 
heterologous expression efficiency will facilitate 
evolution-guided natural product mining; 

(2) Predicting the biological activity of gene 
cluster products remains difficult. Currently, 
the discovery of active molecules can only be 
enhanced by targeting analogs of bioactive 
molecules or natural products with resistance 
genes. Exploring the relationship between 
compound structure and biological activity in 
evolution may provide more opportunities for 
evolution-guided natural product mining to 
discover new active molecules; 

(3) BGCs for terpenes, alkaloids, and other 
compounds often do not exhibit structural 
features of the compounds, and predicting the 
molecular structure of gene cluster products 
remains a significant challenge. For these non-
modular BGCs, we need to increase the number 
of characterizations of gene clusters and their 
products and carefully analyze the evolutionary 

characteristics and patterns of each biosynthetic 
enzyme step.

In terms of enzyme engineering, the rational 
modification of modular enzymes has been an important 
goal since their discovery. Early attempts to modify PKS 
and NRPS often resulted in significantly reduced or 
even inactive enzymes due to the exchange or deletion 
of some domains and modules. Evolutionary analysis 
of assembly line systems can infer sites where natural 
recombination occurs, guiding the design of artificial 
enzyme modification. Currently, new module definitions 
for PKS and the XUC concept for NRPS, derived from 
evolutionary analysis, provide a theoretical basis for 
the modification of modular enzymes. The application 
and further optimization of these concepts will drive 
the development of synthetic biology. Furthermore, this 
approach is not limited to multi-domain and multi-module 
enzymes like PKS and NRPS. Combining evolution 
with big data analysis will also provide new ideas for the 
modification of other enzymes.

Nature has created a rich and diverse array of 
biosynthetic pathways and natural products based on 
various evolutionary mechanisms over millions of years. 
Humanity’s quest to understand nature has never ceased. 
By studying the evolutionary mechanisms of biosynthetic 
enzymes through bioinformatics, mining their active 
products for use in medicine, health, or agricultural 
production, combining big data analysis to depict a 
panoramic landscape of natural products, or utilizing 
nature’s rules and components to design and modify 
biosynthetic enzymes from an evolutionary perspective 
to meet human needs, the process of discovering and 
transforming nature are engaged in.
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